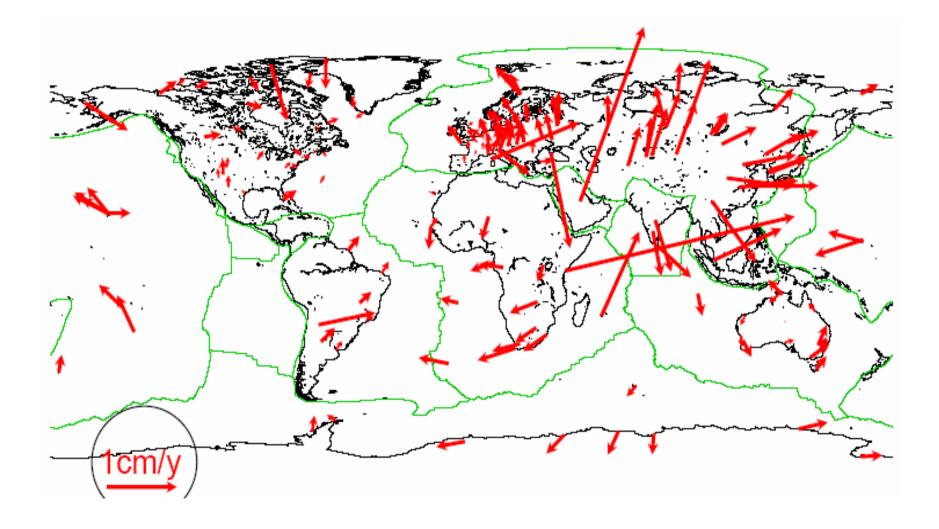
ITRF2005 and consequences for ETRF2005

- Introduction
- ETRS89 definition
- ITRF2005 plate motion model
- ITRF2005 ETRF2005 transformation
- Consequences for ETRF2005
- Conclusions

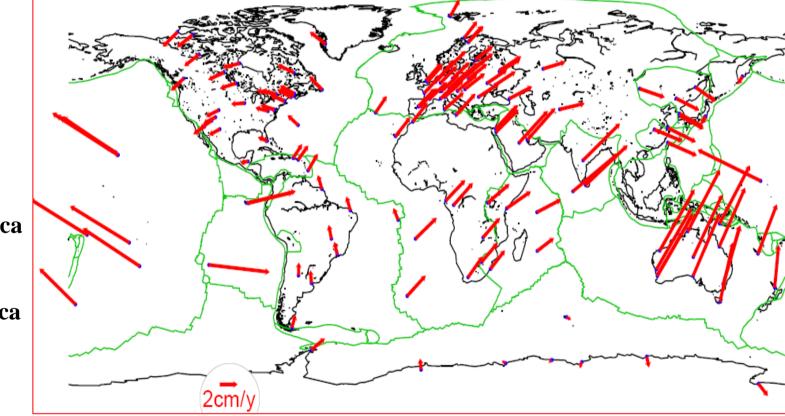


EUREF Symposium, London, June 6-8, 2007


Transformation Parameters From ITRF2005 to ITRF2000

	ТХ	TY	TZ	Scale
	mm	mm	mm	ppb
	mm/y	mm/y	mm/y	ppb/y
Offset At 2000.0	0.1	-0.8	-5.8	0.40
Drift	-0.2	0.1	-1.8	0.08

ITRF2005 and Plate motion: Horizontal Site velocities with $\sigma < 3$ mm/y


Differences ITRF2005 – NNR-NUVEL-1A

Selected sites for plate angular velocities estimation

Pacific Africa Amur Antarctica Arabia Australia Caribbean Eurasia India North America Nazca Okhotsk **South America** Somalia Yangtze

Using PB 2002 Plate boundaries (Bird, 2003)

ITRF2005 Plate Motion Model

Plate	NSª	ϕ, deg	λ, \deg	$\omega(\rm deg/m.y.)$
Amurian	5	56.263	-102.789	0.269
±		6.532	8.569	0.011
Antarctica	8	59.813	-125.315	0.223
±		0.864	1.676	0.007
Arabia	5	49.642	5.061	0.579
±		0.581	2.278	0.019
Australia	14	32.407	37.367	0.628
±		0.267	0.356	0.003
Caribbean	3	39.318	-104.279	0.241
±		10.553	35.968	0.145
Eurasia	41	56.330	-95.979	0.261
±		0.549	0.969	0.003
India	3	49.823	21.841	0.614
±		6.628	24.578	0.108
Nazca	3	45.101	-101.441	0.642
±		1.856	0.753	0.015
N. America	30	-4.291	-87.385	0.192
±		0.861	0.571	0.002
Nubia	13	49.955	-82.501	0.269
±		0.483	1.255	0.003
Okhostk	3	-32.041	-132.910	0.083
±		7.519	12.034	0.006
Pacific	10	-62.569	112.873	0.682
±		0.222	0.743	0.004
S. America	9	-16.800	-129.631	0.121
±		1.593	2.051	0.003
Somalia	3	53.661	-89.542	0.309
±		3.650	8.988	0.019
Yangtze	3	59.425	-109.737	0.310
±		6.651	18.298	0.021

Table 7. ITRF2005 Absolute Rotation Poles

^a Number of used sites

ITRFyy Eurasia Rotation Poles

Table 4: Estimation of \dot{R}_{YY}

		•	•	
	YY	R1	R2	R3
		mas/y	mas/y	mas/y
	89	0.11	0.57	-0.71
	90	0.11	0.57	-0.71
	91	0.21	0.52	-0.68
	92	0.21	0.52	-0.68
	93	0.32	0.78	-0.67
	94	0.20	0.50	-0.65
	96	0.20	0.50	-0.65
Velocity diff. at	97	0.20	0.50	-0.65
the Equator	→ 00	0.081	0.490	-0.792
0.8 mm/yr &		± 0.021	± 0.008	± 0.026
0.5 mm/yr in	÷ 05	(0.054)	0.518	-0.781
Europe		± 0.009	± 0.006	± 0.011

ETRS89 Definition

• Coincides with ITRS at epoch 1989.0:

- Definition at a reference epoch (1989.0)
- The 7 parameters between ITRS and ETRS89 are zero at 1989.0
- Fixed to the stable part of the Eurasian plate
 - Co-moving with the plate: law of time evolution
 - Time derivatives of the transformation parameters are zero except the 3 rotation rates

ETRS89 Realization

- Expression in ITRF_{YY} at central epoch (t_c) of the implied observations
- Expression in ETRS89 using 14 transformation parameters some of them are zeros

Positions
$$X^{E}(t_{c}) = X^{I}_{YY}(t_{c}) + T_{YY} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times X^{I}_{YY}(t_{c}).(t_{c}-1989.0)$$

Velocities

$$\begin{pmatrix} \dot{X}_{YY}^E \\ \dot{Y}_{YY}^E \\ \dot{Z}_{YY}^E \end{pmatrix} = \begin{pmatrix} \dot{X}_{YY}^I \\ \dot{Y}_{YY}^I \\ \dot{Z}_{YY}^I \end{pmatrix} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times \begin{pmatrix} X_{YY}^I \\ Y_{YY}^I \\ Z_{YY}^I \end{pmatrix}$$

EUROPEAN TERRESTRIAL REFERENCE SYSTEM 89 (ETRS89)

Definition

The IAG Subcommision for the European Reference Frame (EUREF), following its Resolution 1 adopted in Firenze meeting in 1990, recommends that the terrestrial reference system to be adopted by EUREF will be coincident with ITRS at the epoch 1989.0 and fixed to the stable part of the Eurasian Plate. It will be named European Terrestrial Reference System 89 (ETRS89).

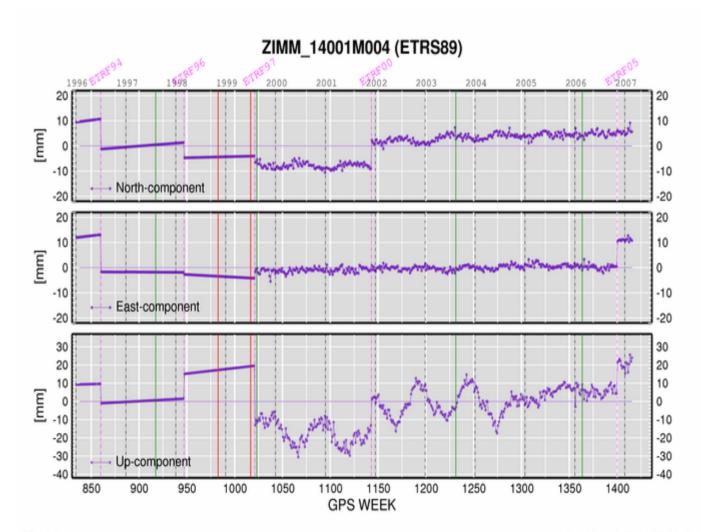
Realization

Following its definition, ETRS89 could be realized through several ways, and specifically:

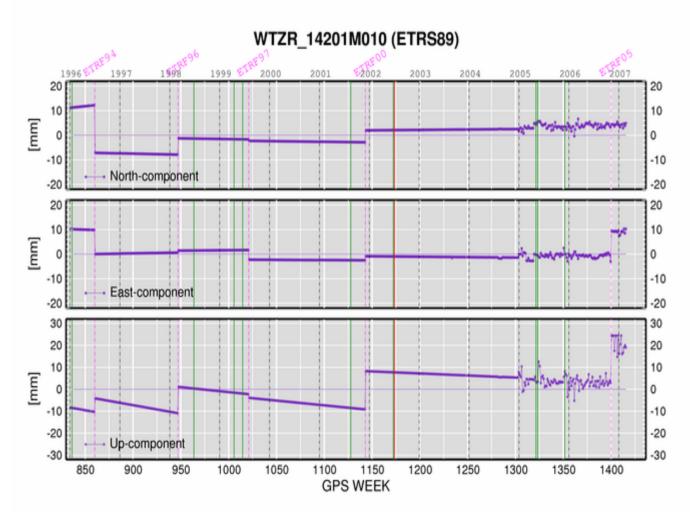
•using ITRS realizations: for each frame labelled ITRF_{yy} a corresponding frame in ETRS89 can be computed and labelled ETRF_{yy} . The following ETRF solutions are presently available:

- •ETRF89
- •<u>ETRF90</u> •ETRF91
- •ETRF92
- •ETRF93
- •ETRF94
- •ETRF96
- •**ETRF97**
- •ETRF2000
- •ETRF2005
- •ETRF2005 (SINEX file)

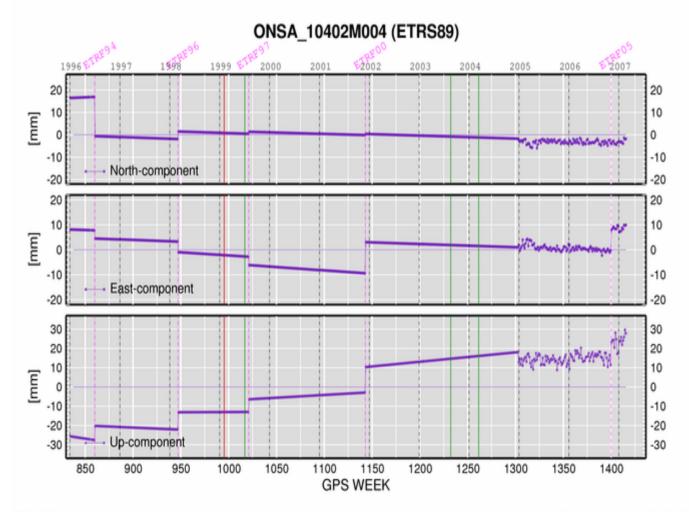
•positioning with GPS measurements of a campaign or permanent stations: using recent ITRF_{yy} station coordinates and IGS precise ephemerides following the procedure described in (Boucher and Altamimi, 2007): <u>Postscript version</u>, <u>PDF version</u>.


Consequences for ETRF2005

• T_{YY} : known at the 1 cm level

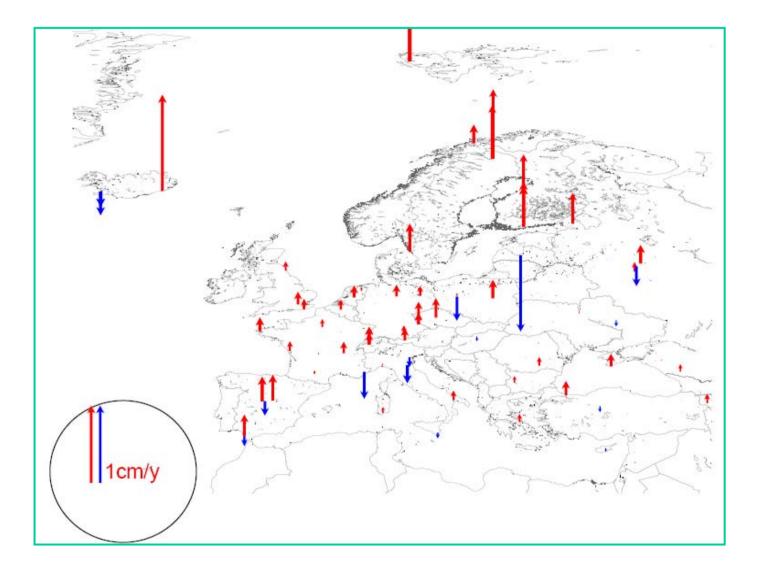

•
$$(t_c - 1989.0)$$
 together with \dot{R}_{YY}

- Velocity change of 0.5 mm/yr produce position change by ~1 cm at epoch 2007
- Vertical velocities change by $1.8 \sin(\varphi) mm/yr$


ZIMM Time Series (ETRS89) (see EPN WEB site)

WTZR Time Series (ETRS89) (see EPN WEB site)

ONSA Time Series (ETRS89) (see EPN WEB site)


Tue May 8 16:43:42 2007

EPN CB

ETRF2005 Horizontal Velocities

ETRF2005 Vertical Velocities

Conclusions

- ITRF2005 ==> ETRF2005:
 - Transformation uncertainty : ~ 1cm
 - Jumps in station positions to be expected when going from ETRF2000 to ETRF2005
- ETRF2005 internal consistency is not altered
- TWG proposal: Minimize the change btw ETRF2000 and the ETRF2005 both in horizontal and vertical components (still under discussion)