

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND

Jan Krynski

Institute of Geodesy and Cartography, Poland krynski@igik.edu.pl

Adam Lyszkowicz

University of Warmia and Mazury in Olsztyn, Poland adaml@moskit.uwm.edu.pl

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006

uropean Reference Frame – EUREF 20 Riga, Latvia, 14-17 June 2006

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006

Riga, Latvia, 14-17 June 2006

Introduction

Geoid/quasigeoid models in Poland

- 1949 first gravimetric geoid model for the region of Central Europe, including Poland (accuracy ~3 m)
- 1962 first astro-geodetic geoid for Poland (accuracy 60 cm)
- 1970 first astro-gravimetric geoid for Poland (accuracy 30 cm)
- 1993 first gravimetric quasigeoid model for Poland, using the LS collocation combined with the integral method (accuracy 10 cm)
- 1997 gravimetric quasigeoid model for Poland, using the FFT technique (accuracy 5 cm)

need for centimetre quasigeoid in Poland

2002-2005 - extensive research on precise geoid/quasigeoid model in Poland with the use of all available geodetic,

gravimetric, astronomic, satellite and geological data

Data used (1)

 1999-2002 levelling campaign: 382 levelling lines (total length 17 516 km, average length ~46 km) 16 150 sections (average length 1.1 km), 135 loops, 245 nodal points
 rms of lev. ±0.278 mm/km^{1/2}, rand. error ±0.264 mm/km^{1/2}, syst. error ±0.080 mm/km, σ of unit weight to ±0.088 mm/km

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006

Riga, Latvia, 14-17 June 2006

Data used (2)

digital terrain models

DTM	Resolution ["]	Vertical acc. [m]	Horizontal acc. [m]
DTED2	1 × 1 1 × 2	2-7	15
SRTM3	3 × 3	16	20
SRTM30	30 × 30		

tide gauge data

25 tide gauges from Danish, Finnish, German, Polish and Swedish coast line (monthly and annual means from at least 50 years)

lithosphere density data

- points of evaluated lithosphere density above the sea level (1363; 1/230 km²)
- map of lithosphere density above the sea level (range 1.71- 2.76 gcm⁻³) mean = 2.17 gcm⁻³; σ = 0.15 gcm⁻³

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006 Riga, Latvia, 14-17 June 2006

Geopotential models

Model	Degree	Туре
EGM96	360	combined
EIGEN-CH03S	140	satellite only
GGM01S	120	satellite only
GGM02S (140)	160	satellite only
GGM02C	200	combined
GGM02S/EGM96	360	combined

GM vs POLREF [m]

Model	Mean	Std dev.	Min	Max
EGM96	-0.53	0.19	-1.03	0.08
EIGEN-CH03S	-0.33	0.76	-2.22	1.06
GGM01S	-0.36	0.46	-1.70	1.05
GGM02S (140)	-0.34	0.47	-1.53	1.23
GGM02C	-0.35	0.26	-1.09	0.49
GGM02S/EGM96	-0.37	0.13	-0.79	0.05

GM vs ∆g [mgal]

Model	Mean	Std dev.	Min	Max
EGM96	-0.18	9.39	-112.01	137.34
EIGEN-CH03S	0.00	17.30	-111.42	182.54
GGM01S	0.26	15.37	-109.94	166.07
GGM02S (140)	-0.14	14.81	111.89	157.57
GGM02C	-0.20	12.44	-115.57	153.86
GGM02S/EGM96	-0.30	9.31	-115.56	135.44

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006 Riga, Latvia, 14-17 June 2006

atitude [degrees]

Map of calculated "2005" ter. corr. at 1 078 046 gravity stations [mGal]

The optimum maximum integration radius [km] for different distortions of terrain elevation

correction [mGal] 15 (flat) 50 (hilly) 300 (model) 0.1 14.90 205 118 118	tive to a gravity station [m]	h of terrain e	Distortion Ah of terra	Accuracy of the terrain
0.1 14.90 205 0.2 0.22 118	illy) 300 (mountainous)	at)	15 (flat)	correction [mGal]
0.2 0.22 118	5 280	0	14.90	0.1
	3 265	2	0.22	0.2
0.3 0.06 33	3 249	5	0.06	0.3

Differences between the "1992" and "2005" terrain corrections [mGal]

Number
of stationsMinMaxMeanStd dev.288 507-8.13510.260-0.0500.616

longitude [degrees]

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006 Riga, Latvia, 14-17 June 2006

T

Mean gravity anomalies

- **1.** Point free-air anomalies $\Delta g_{P'}^F$ on the geoid
- 2. Point Faye anomalies $\Delta g_{P'}^{Faye}$ on the geoid
- **3.** Point Bouguer anomalies $\Delta g_{P'}^{B}$

- $\Delta g_{P'}^{F} = g_{P} + \delta g_{P}^{F} \gamma_{P_{0}}$ with $\delta g_{P}^{F} = 0.3086 \times h_{P}$ $\Delta g_{P'}^{Faye} = \Delta g_{P'}^{F} + c_{P}$ $\Delta g_{P'}^{B} = \Delta g_{P'}^{Faye} 2\pi\rho h_{P}$
- 4. Interpolation of point Bouguer anomalies (Δg_i^{int}) and terrain elevations (h_i^{int}) on the grid of higher resolution then the resultant grid of mean Faye anomalies
- 5. Calculation of mean Bouguer anomalies $\overline{\Delta g}^{B}$ in 1' × 1' blocks
- 6. Calculation of mean heights \overline{h} in 1' × 1' blocks
- 7. Calculation of mean Faye anomalies $\overline{\Delta g}^{Faye}$ in 1' × 1' blocks

Concept of calculating mean gravity anomalies

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006 Riga, Latvia, 14-17 June 2006

Control traverse

GPS/levelling traverse – stations at the benchmarks of 1st and 2nd order precise levelling network

The fit of the heights of the control traverse to the GUGiK 2001 quasigeoid

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006

Riga, Latvia, 14-17 June 2006

Quasigeoid models developed

Gravimetric quasigeoid - different models (gravity data, GM, terr. corr)

	Statistics	quasi04a	quasi04b	quasi04c	quasi04d	quasi05a	quasi05b	quasi05c	quasi06a
fitting to the	Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POLREF sites [cm]	Std dev.	3.2	4.1	3.9	3.6	3.6	3.6	3.7	3.8
	Min	-8.4	-12.0	-10.2	-10.5	-9.2	-9.2	-10.1	-10.3
	Max	10.1	10.8	11.4	10.9	9.0	9.0	9.7	10.1

GPS/levelling quasigeoid - EUREF-POL, POLREF, EUVN, WSSG (kriging, min. curv.)

nure numerical	Statistics	Mean	Std dev.	Min	Max	with gravity	Statistics	Mean	Std dev.	Min	Max
	$\zeta_{\text{model}} = \zeta_{\text{EUVN}}$	-3.4	4.8	-21.3	10.3		$\zeta_{\text{model}} = \zeta_{\text{EUVN}}$	-3.1	2.9	-12.4	2.1
[cm]	ζmodel - ζwssg	-3.1	5.4	-16.7	21.6	support [cm]	ζ _{model} - ζwssg	-3.2	5.5	-25.9	43.8

Integrated quasigeoid - GPS/levelling + gravity + terrain model

fitting to the POLREF, EUVN and WSSG sites [cm]

Statistics	Mean	Std dev.	Min	Max
$\zeta_{model} = \zeta_{POLREF}$	0.5	0.7	-1.3	3.0
$\zeta_{model} = \zeta_{EUVN}$	-0.5	0.6	-2.3	1.2
ζmodel - ζwssg	-1.5	4.0	-24.3	38.9

Best fitted quasigeoid - gravimetric quasigeoid fitted to GPS/levelling

The fit of "best fitted" quasigeoid model to the POLREF sites [cm] (mean difference: 1.0 cm)

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006

Riga, Latvia, 14-17 June 2006

Quality of quasigeoid models

Fit of quasigeoid models to GPS/levelling control traverse [cm]

best-fitted

integrated

Symposium of the IAG Subcommission for Europe European Reference Frame – EUREF 2006

2.0

1.8

-7.4

-4.7

-2.7

-0.7

Riga, Latvia, 14-17 June 2006

0.004"

-0.004"

2.0

5.4

 All available data has been gathered, extensively qualitatively and quantitatively analysed, verified, and unified

- The data has been archived and appropriate databases were developed
- Precise terrain corrections were calculated for all gravity data
- Control GPS/levelling traverse established is a powerful tool for quality control of precise quasigeoid models in Poland
- Quality of heights of the POLREF sites is not sufficient for quality control of precise quasigeoid models in Poland

• New as well as and were deve	astro-geodetic geoid model gravimetric quasigeoid models best fitted quasigeoid model integrated quasigeoid model based on gravity, GPS/levelling and topographic data
• Accuracy	of the developed quasigeoid models has been evaluated
	astro-geodetic 21 cm
	gravimetric 2.2 cm
	best-fitted 2.0 cm
	integrated 1.8 cm
 Develope gained reprint of the precise of the precise	d methods and computing strategies as well as experience flect high potentiality for further research on developing uasigeoid models in Poland

