Constraining the seismic budget of Adria indentation and the dynamics of fault interaction with geodetic strain rate data

A.Caporali, M. Massironi and A. Nardo Department of Geology, Paleontology and Geophysics, University of Padova, Italy

Geodetic strain rate, CMT and seismogenic sources

Moderate (~30 -50 nstrain/yr) are estimated wherever sufficient data are available

Issues related to the knowledge of strain rate in a seismic province

- seismic efficiency: how does the strain rate released seismically (Kostrov) relate to geodetic strain rate?
- When is a fault going to fail, depending on fault geometry and friction coefficients, and how does this epoch depend on the previous failure history, both locally and in the neighbourhood?
- How is the spatial distribution of geodetic strain related to the epicenter location?

Historical seismicity from CPTI 2.0

Past 30 years: Kostrov strain rate in Friuli ~ 400 nstrain/yr, that is nearly 8 times the geodetic strain rate

Year	Month	Day	North Lat	East Long	Μ	depth (km)	Area (km^2)	M0*10^18 Nm	Volume (km^3)	
1976	5	6	46.36	13.27	6.5	9	447	5.62	4020	
1976	5	9	46.24	13.31	5.1	14	25	0.04	344	
1976	5	11	46.51	12.90	4.7	15	11	0.01	161	
1976	5	11	46.27	12.99	5.2	11	30	0.06	332	
1976	9	6	46.24	13.03	5.2	5	30	0.06	151	
1976	9	11	46.28	13.16	5.5	16	56	0.18	900	
1976	9	11	46.30	13.20	5.4	20	46	0.13	914	
1976	9	11	46.23	13.20	5.1	10	25	0.04	245	
1976	9	12	46.22	13.15	4.6	3	9	0.01	26	
1976	9	15	46.30	13.20	6.3	10	295	2.82	2951	
1976	9	15	46.31	13.14	4.9	10	16	0.02	162	
1976	9	15	46.29	13.11	4.5	8	7	0.01	57	
1976	9	15	46.32	13.13	5.9	17	129	0.71	2190	
1976	9	15	46.33	13.18	5.0	10	20	0.03	200	
1976	9	17	46.42	13.37	4.9	10	16	0.02	162	
1978	12	12	46.31	12.71	4.5	10	7	0.01	71	
1979	4	18	46.32	13.25	5.1	11	25	0.04	270	
1981	8	30	46.32	13.31	4.9	10	16	0.02	162	
1981	12	5	46.32	12.72	4.7	10	11	0.01	107	
1983	2	10	46.21	13.33	4.9	10	16	0.02	162	
1986	8	29	46.34	12.47	4.8	10	13	0.02	132	
1988	2	1	46.31	13.12	5.4	8	46	0.13	366	
1988	2	4	46.31	13.13	4.6	15	9	0.01	131	
1991	10	5	46.21	13.26	4.5	10	7	0.01	71	
1994	4	20	46.30	12.57	4.8	10	13	0.02	132	
1998	4	12	46.24	13.65	6.0	10	158	1.00	1585	
1998	5	6	46.24	13.71	5.1	10	25	0.04	245	
1998	5	28	46.24	13.04	4.5	10	7	0.01	71	
2002	2	14	46.37	13.17	5.3	10	37	0.09	372	
2004	7	12	46.30	13.64	5.7	7	85	0.35	596	
28			33	98			1636	12	17287	397
yrs			North boxsize km	East boxsize km			3258	(M0)total		Kostrov (nstrain/yr)
							box(km^2)		μ=	30
									(Gpa)	

Two opposite interpretations are in principle possible:

- active deformation is slowing down (\rightarrow less hazard)
- end of seismic cycle (\rightarrow greater hazard)
- or: still settling from the 1976 M=6.5 event -> need longer averaging time

Analysis of the Parametric Catalogue of Historical Earthquakes CPTI 2.0 of INGV

- Criteria of analysis:
 - Select a location where geodetic strain rate could reliably be computed
 - Compute slip area and seismic moment from magnitudo by means of statistical formula, for earthquakes within 290 km from selected location
 - Sum equivalent Kostrov strain rates and divide by time interval
- Results:
 - 555 events from 778 (Treviso) till
 1998 (Bovec) spanning 1220 years
 - Max M=6.5
 - Average strain rate: 7 10 nstrain/yr
 - Average strain rate equals geodetic strain rate after ca. 300 yrs

Deviatoric stress at yield point $\Delta \sigma_{xx}$

Theory of Anderson :

$$\sigma_n = \rho g h - p_w + \frac{\Delta \sigma_{xx}}{2} (1 + \cos 2\theta)$$
$$\tau = \pm \frac{\Delta \sigma_{xx}}{2} \sin 2\theta$$

Amonton law: static limit to the deviatoric stress $\tau = f_s \sigma_n \Rightarrow \Delta \sigma_{xx} = \frac{2f_s(\rho gh - p_w)}{\pm \sin 2\theta - f_s(1 + \cos 2\theta)}$ Recurrence time Δt under a perfectly elastic, plain stress hypothesis : it depends on strain rate and preexistent deviatoric stress in the rocks:

strain rate and preexistent deviatoric stress in the rocks:

In 100 years tectonics accounts for 0.2 MPa, if the strain rate is 30 nstrain/yr If the yield deviatoric stress is of some MPa, for M>5.5 typically, f_s must be of the order of 0.01 and the starting stress must also be of the order of 1 MPa

Yield deviatoric stress non tectonically driven

• One way is to decrease the yield deviatoric stress by increasing the

pore fluid pressure $\Delta \sigma_{xx} = \frac{2f_s(\rho gh - p_w)}{\pm \sin 2\theta - f_s(1 + \cos 2\theta)}$

- Alternatively, we can imagine that hydraulic heads triggered by a major earthquake generate the necessary deviatoric stress at nearby locations and later times
- This could be in principle achieved by diffusion, in a neighbourhood of a preceeding earthquake
- In such case, events following a major (M>6) earthquake should correlate according to the dimensionless variable

$$\xi = \frac{d}{2\sqrt{\kappa t}}$$

Where d is the distance from the major event, t is the time since the major event and κ is the diffusion coefficient

Assume isotropic diffusion, i.e. not channeled along preferred directions

Example: Friuli (1976) and Bovec (1998) seismic *'diffusion sequences'*

- Method:
- Compute coseismic strain ε for each event
- Plot against similarity variable $\xi = \frac{d}{2\sqrt{\kappa t}}$
- Find diffusion coefficient κ such that diffusion model fits the data Result: $\kappa = 0.1 \text{ m}^2/\text{sec}$

Interpretation of κ for isotropic flow in a porous medium

• Linearized Boussinesq equation describes the height of the phreatic surface in the one-dimensional flow through an unconfined aquifer:

 $\kappa = 0.1 \text{ m}^2/\text{sec}$ is consistent with these values

Can earthquakes trigger other smaller earthquakes nearby?

- The two examples of Bovec and Friuli seem consistent with a model in which the main event triggers a hydraulic head which propagates by diffusion with a coefficient <u>k=0.1 m²/sec</u>
- If this is true, then following a major event, one would be able to predict at each point the probability of an event of given Magnitude

Slip Profiles in the Eastern Alps

Velocities are interpolated to a profile (left) and their projection onto the profile is plotted against space (right)

- A shortening of up to ~ 6 mm/yr is implied across the 300 km profile, or 20 nstrain/year. Locally can be higher, to ~ 40 nstrain/yr
- Divergent pattern in parallel profiles across the Tauern window may imply a squeezing and hence lateral extrusion

Strain rate profile and hypocenter location

Finite elements simulation of sliding wedge 'stick/slip'

Boundary Conditions:

- North side: southwards surface force linearly increasing with time
 - •Bottom: stick/slip model (tangential); penalty stiffness (normal)
 - •South side: small horizontal penalty stiffness (required for numerical stability)
 - •Top: free

Conclusions

- Geodetic data in Friuli indicate a shortening of 4 6 mm/yr, with inversion in Tirol: possible kinematic evidence of the extrusion of the Tauern window
- The pattern of the horizontal strain rate measured by GPS can be used to constrain the most probable epicenter location
- The earthquake activity is such that the Kostrov strain rate (i.e. average strain released by earthquake during a time) drops to the geodetic value of 30 nstrain/yr after no less than 300 yrs. During this interval rocks are loaded by 0.6 MPa
- Yield stress corresponding to a stick/slip transition depends on friction coefficient, pore fluid pressure, dip angle, reverse/direct faulting...
- A linearly increasing load can bring a sticking fault to slip after a time which depends also on initial load on the rocks
- Earthquakes of decreasing intensity can be related to a major event if it triggers an hydraulic head which propagates through a porous medium with diffusion coefficient 0.1 m²/sec
- Evidence has been provided for the Bovec and Friuli sequences. Previous data in the CPTI catalogue are probably unsufficiently detailed
- If this model is true, it can prove a valuable method in seismic risk prediction, after a major event