

A New Common Nordic Reference Frame

Per Knudsen

&

NKG Working Group "Positioning and Reference Frames" (Hannu Koivula, SF, Finn Bo Madsen, DK, Karsten Engsager, DK, Lotti Jivall, S, Martin Lidberg, S, Mette Weber, DK, Torbjørn Nørbech, N)

Background

The Nordic countries have implemented national realizations of ETRS89 during the 90s accommodating the needs of the NMCAs and international standards. So far – so good.!

Technologies develop – new applications of GNSS:

- cm accuracy RTK services
- Construction work Geo-Rail
- Subsidence of structures
- Earth system monitoring (sea level) GGOS
- -> New requirements

Background

- Presently, a Nordic Positioning Service is under development by the Nordic collaboration NKG,
- Different epochs and different ITRFs for the individual national realizations caused differences up to a few cm.
- Hence, we have a situation, where a common Nordic reference frame would be useful.
- A common reference frame could also act as a link between the different national realizations and between those realizations and ITRF.

Background

NKG requested for the Nordic area the development of

- a unified ETRS 89 reference frame on the cm level,
- transformations from such a reference frame to the national realizations of ETRS 89, as well as the
- transformation from ITRF to the unified ETRS 89 reference frame.

The NKG working group for Positioning and Reference frames was given the task to develop such a common Nordic reference frame and the transformation formulas.

Tasks

- To establish the new common Nordic reference frame the following tasks were considered:
- 1. Campaign specifications, epoch, link modern geodetic monitoring stations (EPN) and original defining points
- 2. Data processing, more softwares, to establish the common Nordic reference frame
- 3. Define transformations to National ETRS89 realizations, and, furthermore, to
- Estimate a velocity field to secure future applications, i.e. the long term stability, of the common Nordic reference frame.

Campaign specifications

- 133 stations (old defining bench [™] marks and EPN stations), +Baltic +Iceland +GR
- 7 days, Week 40 in 2003, GPS week 1238,
- Coordinator:
 - F.B. Madsen, DK/DNSC

Data processing

Softwares:

- N: NMA GIPSY
- S: OSO GAMIT/GLOBK
- S: LMV Bernese ver 5.0
- DK: KMS Bernese ver 4.2
- Use recommended settings for each programme
- ITRF 2000, epoch of the campaign (2003.75)

Coordinator:

Lotti Jivall, S/LMV

(see dedicated presentation)

Harmonizing the solutions (Jivall, S/LMV)

The combined solution (Jivall, S/LMV)

The combined solution realize the common Nordic reference frame in ITRF2000_2003.75 fulfilling the requirements.

Estimated accuracy:

Internal: RMS of all differences (E, N, Up)

• 0.9, 1.2 and 2.5 mm after harmonization A few large residuals after harmonization

External: Systematic, common mode errors, seasonal effects

• ~5, ~5 and ~10 mm (RMS)

Transformations

The National ETRS89 realizations have already been adopted and introduced to the users. They will not be replaced.!

We will not promote a new ETRS89 realization, but recommend that the new Nordic frame will be in ITRF2000_2003.75.!

Define transformations directly from the ITRF200_2003.75 Nordic frame to each National ETRS89 realization (7parameter, low degree polynomials)

On-going task (/ discussion). Coordinator: T. Nørbech, N/NMA

Transformations

The Nat'l ETRS 89 frames are made at different epochs and ITRFs

- there are differences between the realizations up to a few cm.

On-going task (/ discussion). Coordinator: T. Nørbech, N/NMA

Velocity field

Estimate a velocity field to secure future applications, i.e. the long term stability of the common Nordic reference frame.

Future task - soon!

Contribution by BIFROST, Milne, and M. Lidberg. See presentation by M Lidberg

Velocity field

Horizontal velocities from **BIFROST**, Milne et al, and

M. Lidberg.

Velocity field

Vertical velocities from Ekman Lidberg Milne et al Winter

Conclusions - discussion

To accommodate a future Nordic RTK service

- A common Nordic reference frame with up-dated accuracy in ITRF2000_2003.75 has been established.
- Transformations to National ETRS89 frames will be made.
- A velocity field in 3D (consistent with ITRF2000) will be developed to secure the long term stability.

The frame may accommodate needs of a variety of new GNSS applications.

Covering Greenland and Norway we have an arctic frame valuable for the IPY.

We do not recommend a new ETRS89 frame to avoid multiple ETRS89 realizations – nor numerous technical frames..(???)