# Real-time RTK messages for permanent reference station applications standardized by RTCM

Dr.-Ing. Hans-Juergen Euler Leica Research Fellow

- when it has to be right



### **Permanent Reference Station Arrays**

Arrays with Permanent Reference Stations are established worldwide.

Network RTK with Networking Reference Stations is one technique:

- to share Reference Station Observation Information in Real-Time
- to improve coverage
- to homogenize coordinates over large areas

The performance of RTK systems is ultimately dependent on a seamless and completely documented information flow.



#### **Moves towards Standard**

#### RTCM (Radio Technical Committee for Maritime services)

- Defined more compact standard V3.0
  - Reduces required throughput by 70% compared to V2.3
- Interoperability
  - Supported by all manufacturers
- Defined Network RTK messages
  - Master-Auxiliary Concept
- Standard targets always broadcast media
  - no bi-directional communication required
  - Radio broadcast
  - Internet broadcast





Observation Collection at Central Location

Resolution

**Ambiguity** 

between Reference Station Fit Model Parameters to Deviations

Correct Observations for Rover using Mode Parameters

Calculate Rover's

Calculate Rover' Position

Reference Stations

Processing of Observations



Rover

System



**Integer Ambiguity** Collection arameters Resolution in Network Easy to define Positio for Rover us Parame Correct Obs Observation Calculate Fit Mode Reference Rover **Stations** System Processing of Observations - when it has to be right

Geosystems







Collection Fit Model Parameters Observations for Rover using Mode Resolution Parameters Observation Sorrect oetween at Reference **Stations** Processing of

Calculate Rover's Position

> Rover System

Observations



# **Proprietary Interfaces**

For the first installations proprietary interfaces have been used.

Information is disseminated using a standard format container, but the content is not completely described.

#### Consequences?

- Full Interoperability is not guaranteed
- Complete information is missing for following calculation steps
- Rover applications cannot perform optimally







#### **Basic Idea of Correction Differences**

Transmission of Observation Information of Several Reference Stations with Minimal Changes

Carrier Phase Observations of Different Reference Stations have Different Integer Ambiguities

- Homogenization of Information is required
- Overall Integer Ambiguity Level between Reference Stations

Main part is Satellite geometry between Reference Station and Satellite

- Elimination of Satellite Geometry
- Already defined for RTCM type 21 Messages (Version 2.3)

Tropospheric, Ionospheric and Orbit Error are Spatially Correlated

Single Differencing between Reference Stations is greatly reducing these effects



# **Forming Correction Differences**

Forming single differences, separating known information

$$\Delta\Phi_{AB,1}^{j}(t) \left[\Delta\tilde{s}_{AB}^{j} - c \cdot \Delta dt_{AB,1,\Phi} - \frac{c}{f_{1}} \cdot \Delta N_{AB,1}^{j} \right] = \Delta T_{AB}^{j}(t) + \Delta \delta r_{AB}^{j,\Delta E} + \frac{\Delta T_{AB}^{j}(t)}{f_{1}^{2}} + \Delta \varepsilon_{1,\Phi}$$

Single Differenced Phase Observation Remaining error sources: Non-eispersive and dispersive

No Models which need extended description due to standardization problems !!!



# **Proposed Concept (Master-Auxiliary Concept)**

One master reference station

Some auxiliary reference stations



Reference lween Reference **Stations** 

Interface Master-**Auxiliary** Concept

Fit Model Parameters for Rover using Mode Correct Observations **Deviations** 

Salculate Rover's Rover System

Position

Processing of Observations



# Network RTK tests based on Master-Auxiliary Concept Interface

- Network with extremely short baselines
- Severe Ionospheric Disturbances
  - November 14, 2003
- Analysis of Observation Data (Hong Kong)
- Improvements with Network Results
  - 5 Permanent Reference Stations
  - Station HKKT used as rover
- Comparison between Single Baseline and Networking Results



#### **Hong Kong** HKFN Master Auxiliary 9.2 km Rover • **Designated rover 45** HKKT seconds observation 7.8 km interval **HKLT** -13.3 km 16.4 km **HKST HKSL** 15.6 km 20000.0 m HKSC - when it has to be right

Geosystems

# **Typical RTK rover settings**

Typical processing parameters for baseline distances less than 10 km:

No stochastic modeling for ionosphere.

Typical processing parameters for baseline distances less than 20 km:

Stochastic modeling for ionosphere with ionospheric activity low.







# **Summary and Conclusions**

**Principles of Network RTK lined out** 

Information flow and calculation steps analyzed

Importance of choice of interface for interoperability

#### **Master-Auxiliary Concept introduced**

Optimally positioned interface for interoperability

#### Results of Performance of Master-Auxiliary Concept demonstrated

- Network with very short baselines and high ionosphere
- Performance increased from 30% to 100%
- Other results may be found on our web page



- when it has to be **right** 

