EUREF-Czech-2009 Campaign

J. Douša, V. Filler, J. Kostelecký (jr), J. Kostelecký, J.Šimek (jan.dousa@pecny.cz)

Geodetic observatory Pecný Research Institute of Geodesy, Topography and Cartography

Contents

- Introduction
- Campaign configuration
- Daily processing
- Final combination
- Results
- Transformation to ETRS89
- Comparison with previous ETRS89 realization
- Conclusions

Corrections

of the final report as sent on May 11, 2010 to the EUREF TWG members

- WROC station remained by mistake as a fiducial in specific problematic period
 - no velocity change
 - all coordinates shifted by

K :: - 0.2 mm K :: + 0.3 mm Z :: 0.0 mm

- Table 5 was not correctly presented (different epochs were applied in ETRS89 comparison)
 - no effect for coordinates and velocities
 - no effect on variant selection

New report version has been prepared on May 30, 2010 and is available at http://www.pecny.cz/CZETS/ETRS89-CZ FinalReport-V1.pdf

and improvements suggested by Elmar and Gunter were already incorporated:

- mentioned 5 new EPN stations in CZ marked in map / DOMES in list
- reference coordinates expressed in 2005.0 instead of 2007.0
- included reference to daily raw time-series

Introduction

History

EUREF-CS/H'91 (1991) - accepted by the EUREF TWG, class 'B'

• 6 stations in region of the Czech and Slovak Federative Republic

CS-NULRAD (1992) – first order densification

6+13 stations

CS-BRD (1993) – connecting Czech and German GPS networks

some NULRAD re-observed and recomputed

DOPNUL (1993-1994) - second order densification

• 176 stations

Today

Active reference network – CZEPOS (since 2005) is used for new ETRS89 densification as a first step from altogether 46500 points in the Czech Republic with an average distance of 2 km

Campaign configuration

Stations

- 44 Czech permanent stations
 - 23 CZEPOS (4 EPN: CFRM, CLIB, CPAR, CRAK, CTAB)
 - 7 VESOG (2 EPN: TUBO, GOPE)
 - 9 GEONAS (4 EPN: BISK, MARJ, POUS, VACO)
 - 5 TOPNET
- 18 EPN in other European Countries
 - Class 'A' stations with smooth EPN coordinates
 - Fiducial stations in EPN cumulative solution
 - Close surrounding of the Czech Republic
 - Distances of 1000 km in all directions from the centre of network

Data

2005-2009: 1 - 4 years for different stations

GPS data used only

SNEC – only summer periods selected (Jun-Sep)

Map of Czech GPS permanent stations

EPN Class 'A' fiducial candidates

Daily processing

Strategy consistent with the GOP contribution to EPN

Data and product conversion, a priori input files (CRD, SIG, FIX,..)

Single point positioning (receiver clock synchronization)

Baseline definition (OBS-MAX)

Data cleaning, cycle-slip detection, ambiguity setting

Ambiguity-float solution for post-fit residual screening and outlier detection

Iterative solution for selection of fiducial stations

Integer ambiguity resolution (QIF strategy)

Ambiguity-fixed daily solution using no-net translation based on selected fiducial stations

Software

Bernese GPS software V5.0

Distributed parallel processing in clusters

Applied products and models

Products

A priori coordinates from IGS05/ITRF05 solutions

IGS final orbits and ERPs

CODE ionosphere products

Ocean tide loading (FES2004, no CMC corrections)

Absolute antenna PCV model (epn_05.atx + CZEPOS individual)

Reference coordinates from the EPN cumulative solution (EPN_A_ITRF2005_1570)

Observations

30 sec, sampled to 180 sec in final processing

3 deg elevation cut-off (10 deg for ambiguity resolution)

Elevation-dependent weighting

Atmosphere modelling

Ionosphere

Ionosphere-free linear combination (only 1st order-effect)

2nd and 3rd ionosphere effect neglected

CODE model used for integer ambiguity resolution

Troposphere

A priori model Saastamoinen + Niell dry mapping function 1 correction/60 min/station + Niell wet mapping function

Loosely constrained (5m/1m, absolute/relative)

In final estimation only: horizontal gradients/day/station Parameters pre-eliminated before saving NEQs/SINEX

Advanced processing steps

Data cleaning

Processing in clusters of ~20 stations

Detection of specific problem with station or satellite

Robust procedure with possible re-iteration in case of detected problems

Datum definition

Iterative selection of best fitting fiducial stations (ambiguity float solution)

A priori set of 10 stations used as fiducials in IGS05 realization

— BOR1, BRUS, GLSV, GRAS, JOZE, MATE, ONSA, POTS, WTZR, ZIMM

Typical RMS from residuals: 2.4/4.4/5.0mm (NEU)

Stable datum definition provided on daily basis

Ambiguity resolution

10 deg cut-off angle, cluster mode (~4-8 stations)
QIF-strategy with support of CODE ionosphere model
Coordinates and troposphere introduced from the float solution
85 % average of resolved integer ambiguities

Daily raw time-series

Final combination (1)

Fiducial stations - 4 tested variants

- A) 11 EPN stations fiducial in the EPN cumulative solution
- B) 10 EPN/IGS stations fiducial in daily solution (and IGS05)
- C) 24 all EPN stations excluding GOPE before GPS week 1400
- D) 20 all EPN stations excluding those with larger residuals

Reference coordinates and velocities

2007.00 - central epoch of the combination

Coordinates and velocities for fiducial stations from **EPN_A_ITRF2005_C1570**

Special handling of reference coordinate changes at GPS week 1400

- whenever possible extrapolated before week 1400 (until change of antenna)
- Short-periods not extrapolated for : DRES, GOPE, PENC, RIGA, TUBO, WROC

A priori NUVEL1A model for non-EPN coordinate propagation to the central epoch

Rejection of outliers

8, 8, 25mm (NEU) and 15, 15, 40mm for EPN and non-EPN stations, respectively Excluded a priori known problems

- winter periods (LYSH, BISK, SNEC, KUNZ)
- instrument malfunctioning (JOZE)

0.5 % rejected outliers from total data (LYSH and SNEC excluded)

Final combination (2)

Detection of jumps in coordinate time-series

Iterative procedure with screening residuals

Smooth intervals for individual station coordinates identified

Coordinates

Estimated for all stations in pre-defined intervals
4 variants of fiducial stations applied for no-net-translation (NNT)

Velocities

Heavily constrained for EPN stations to EPN_A_ITRF2005_C1570 Estimated for non-EPN stations with data span > 3 years

- Horizontal: loosely constrained
- Vertical: heavily constrained, but for Variant 'D'

Single set of velocities for the whole data span

Final variant selection

- Compared to EPN_A_ITRF2005_C1570 to reproduce translations
- RMS of 3D Helmert transformation
- Variant 'D' selected as the final

		lations PN Clas		Translations [mm] (only fiducial)			RMS of Helm. trafo [mm] (only fiducial)			
	North East		Up	North	East	Up	North	East	Up	Total
A	0.0	-0.9	-0.5	+0.1	-0.1	0.0	1.0	0.8	3.5	2.1
В	0.0	-0.9	-0.6	+0.1	-0.1	0.0	1.0	0.8	3.6	2.2
С	+0.3	-0.4	-0.9	+0.1	-0.1	0.0	1.2	1.2	3.2	2.1
D	+0.3	-0.5	-1.1	+0.1	-0.1	0.0	1.1	1.1	2.8	1.9

Fiducial stations

			<i></i>		D – final solution				
	Station		Fiducal set				n		
N.		A	В	C	D	North [mm]	East [mm]	Up [mm]	Flag
	BISK 11520M001			✓	✓	0.2	0.8	0.8	
888	BOR1 12205M002B	✓	✓	✓	✓	-0.4	-0.6	0.6	
883	BRUS 13101M004B	√	✓	✓	✓	-0.8	1.7	-1.2	
88	DRES 14108M001			✓		-1.4	-2.1	-2.2	M
<u></u>	DRES 14108M001C			✓		-1.2	-1.7	-1.2	M
8	DRES 14108M001D			✓		2.2	-0.1	6.9	M
8	GLSV 12356M001B	✓	✓	✓	✓	2.2	-0.4	2.7	
8	GLSV 12356M001C	✓	✓	✓	✓	1.1	-0.0	3.8	
8	GOPE 11502M002					3.1	-1.4	-17.0	M
8	GOPE 11502M002B					2.7	-1.1	-20.2	M
*	GOPE 11502M002C			✓	✓	0.1	0.1	0.9	
>>>>	GRAS 10002M006B	✓	✓	✓	✓	0.1	1.2	-3.9	
255	GRAZ 11001M002			✓	✓	0.2	-0.0	-1.0	
ŝ	GRAZ 11001M002B			✓	✓	-0.8	-2.2	-2.3	
ŝ	GRAZ 11001M002D			✓	✓	0.0	0.8	-1.5	
ŝ	JOZE 12204M001B	✓	✓	✓	✓	-0.0	-0.3	1.4	
2	LINZ 11033S001B			✓	✓	-0.0	0.9	-1.8	
222	MARJ 11517M001B			✓		0.2	0.9	0.6	M
2	MATE 12734M008B	✓	✓	✓		2.3	0.7	-6.3	M
222	MATE 12734M008C	✓	✓	✓		0.3	1.5	-7.0	M
*	MOPI 11507M001B			✓	✓	0.1	0.2	-1.8	
222	ONSA 10402M004B	√	✓	✓	✓	-0.7	-0.2	3.0	
*	PENC 11206M006			✓	✓	-3.6	-0.4	-0.2	
222	PENC 11206M006B			✓	✓	0.1	0.3	1.8	
~	PENC 11206M006C			✓	✓	3.0	-2.3	-1.8	
222	POTS 14106M003	1	✓	✓	✓	-0.3	0.1	2.5	
2222	POUS 11518M001			✓	✓	-0.1	1.1	0.3	
222	RIGA 12302M002			✓	✓	-0.5	-1.1	2.1	
2222	RIGA 12302M002B			√	✓	-0.6	-1.0	2.6	
222	RIGA 12302M002C			√	✓	0.2	-0.5	4.8	
3	SOFI 11101M002	✓		✓	✓	0.4	0.3	-1.3	
2222	TUBO 11503M001			✓	✓	-0.9	-2.2	-2.6	
>>>	TUBO 11503M001B			✓	✓	1.3	3.0	-5.4	
2222	TUBO 11503M001D			✓	✓	-0.4	-1.1	4.8	
>>>	VACO 11516M001B			✓		0.7	0.4	1.7	M
^^^	WROC 12217M001			√	✓	0.1	-0.5	-6.2	
555	WROC 12217M001C					-0.7	-11.0	-0.7	M
8	WROC 12217M001D			✓	✓	-0.2	-0.4	1.1	
ŕ	WTZR 14201M010B	1	✓	1	1	0.2	1.1	1.4	
**	ZIMM 14001M004B	1	1	1	1	0.1	0.7	-3.7	

Variant D: Recovery of fiducial stations

Coordinate time-series

Estimated velocities, repeatability

Transformation to ETRS89

Final coordinate list

ETRF2000(R05) – ETRS89 via realization in ITRF2005 and using EUREF conventional reference frame (ETRF2000)

Transformation method

Tested both methods from Memo Ver7 (Boucher and Altamimi)

- ITRF2005 → ITRF2000 → ETRF2000
- ITRF2005 → ETRF2000

Results were consistent at a sub-millimetre level

EPN web-page service finally applied (the same results)

Comparison with previous ETRS89 realization

Problematic

Indirect, no common GPS points
Previous realization is more than 15 years old
Multi-step derivation of ETRS89 coordinates involved
Finally, coordinates from 27 stations were compared by 3D Helmert transf.

Results

Agreement on cm-level in horizontal and a few cm in vertical components Nearly 1 cm offset in North component common to all stations Only CPRA stations residuals exceed 15 mm in horizontal component

Number	Т	ranslation	S	RMS of Helmert transformation				
of sites	North	East	Up	North	East	Up	Total	
<u> </u>	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
27	+8.6	+2.3	-1.8	6.7	7.4	22.3	14.1	

Conclusion

- 44 + 18 Czech and EPN permanent stations
- 1-4 years processed
- Repeatability better than 2, 2, 6 mm in NEU for all stations
- 4 variants of fiducial stations of no-net-translation according to EPN_A_ITRF2005_C1570 coordinates and velocities
- Overall agreement within 1.1 mm in three translations over all EPN stations
- Selected variant 'D' with 20 fiducial EUREF Class 'A' stations
- 1.1, 1.1, 2.8 mm (NEU) RMS from the Helmert transformation for all fiducial stations
- Coordinates and velocities expressed in ETRF2000(R05) E2007.0
- Comparison to previous ETRS89 realization on a cm-level

Comparison to ITRF2005

- Original coordinates from ITRF in epoch 2007.00
- All EPN class 'A' coordinates available in ITRF identical

	Trans	lations [mm]	RMS of Helm.trafo [mm]				
	North	East	Up	Up North		Up	Total	
A	-0.1	-0.1	-1.7	2.6	2.9	5.5	3.9	
В	-0.1	+0.1	-1.5	2.6	2.9	5.5	3.9	
С	-0.3	-0.3	-1.2	2.6	2.9	5.4	3.8	
D	-0.4	-0.3	-1.1	2.6	2.9	5.4	3.8	