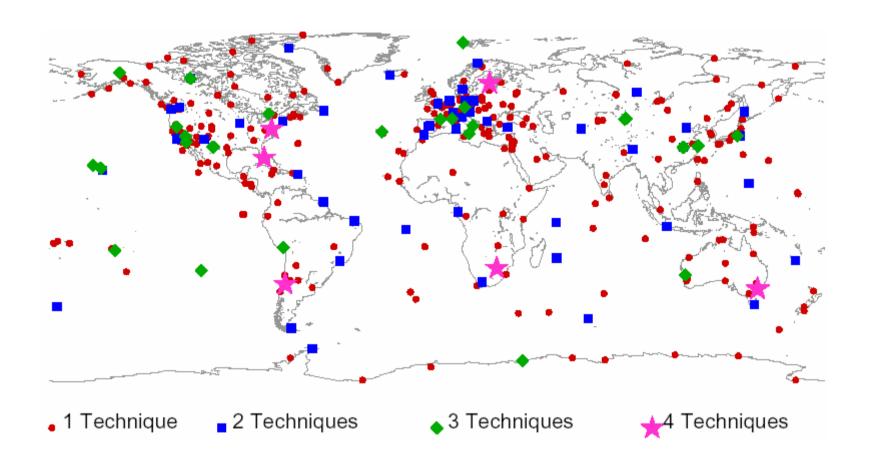
ITRF2005 and consequences for ETRF2005

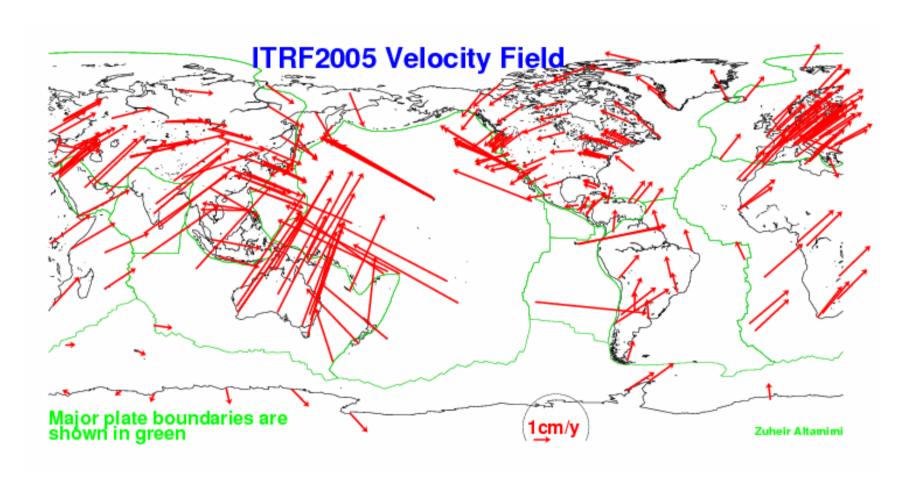

- Introduction
- ETRS89 definition
- ITRF2005 plate motion model
- ITRF2005 ETRF2005 transformation
- Consequences for ETRF2005
- Conclusions

Zuheir Altamimi IGN, France

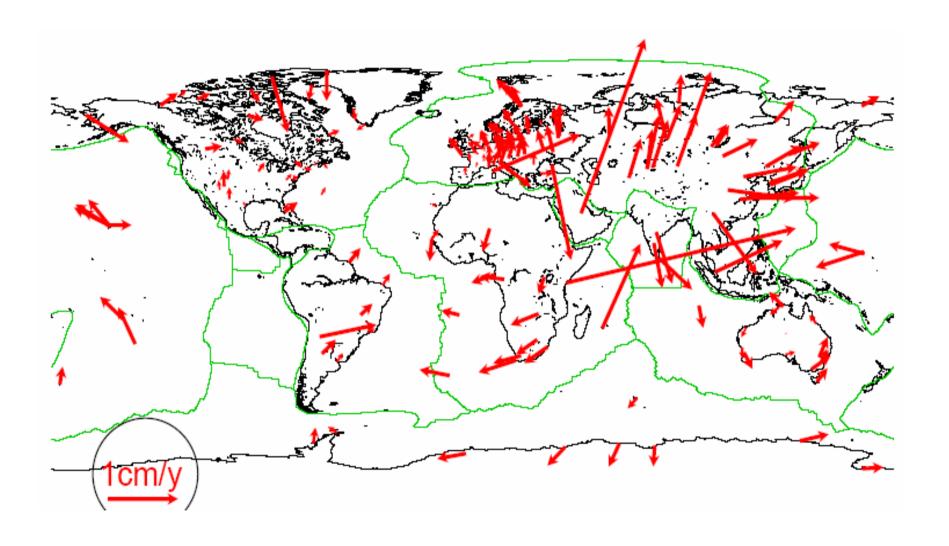
ITRF2005 Co-locations

Transformation Parameters From ITRF2005 to ITRF2000

TX	TY	TZ	Scale	
mm	mm	mm	ppb	
mm/y	mm/y	mm/y	ppb/y	
0.1	-0.8	-5.8	0.40	
-0.2	0.1	-1.8	0.08	


Offset

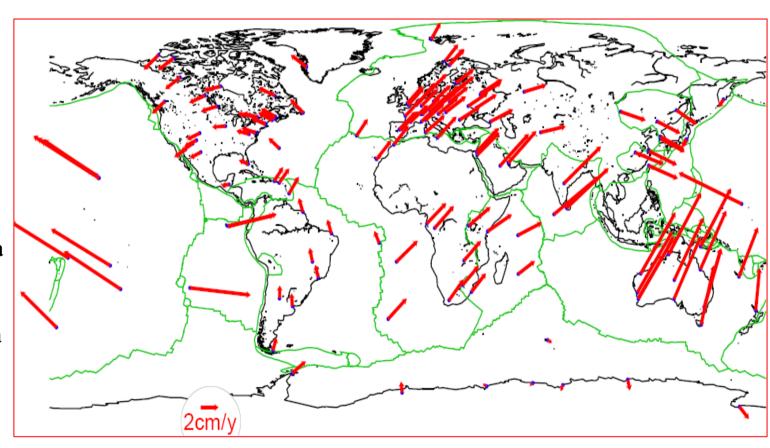
2000.0


Drift

At

ITRF2005 and Plate motion: Horizontal Site velocities with σ < 3mm/y

Differences ITRF2005 – NNR-NUVEL-1A



Selected sites for plate angular velocities estimation

Using PB 2002 Plate boundaries (Bird, 2003)

Pacific Africa Amur Antarctica Arabia Australia Caribbean Eurasia India **North America** Nazca Okhotsk **South America** Somalia

Yangtze

ITRF2005 Plate Motion Model

Table 7. ITRF2005 Absolute Rotation Poles

Plate	NS^a	ϕ, deg	λ , deg	$\omega({\rm deg/m.y.})$
Amurian	5	56.263	-102.789	0.269
\pm		6.532	8.569	0.011
Antarctica	8	59.813	-125.315	0.223
\pm		0.864	1.676	0.007
Arabia	5	49.642	5.061	0.579
\pm		0.581	2.278	0.019
Australia	14	32.407	37.367	0.628
\pm		0.267	0.356	0.003
Caribbean	3	39.318	-104.279	0.241
\pm		10.553	35.968	0.145
Eurasia	41	56.330	-95.979	0.261
\pm		0.549	0.969	0.003
India	3	49.823	21.841	0.614
\pm		6.628	24.578	0.108
Nazca	3	45.101	-101.441	0.642
\pm		1.856	0.753	0.015
N. America	30	-4.291	-87.385	0.192
\pm		0.861	0.571	0.002
Nubia	13	49.955	-82.501	0.269
\pm		0.483	1.255	0.003
Okhostk	3	-32.041	-132.910	0.083
\pm		7.519	12.034	0.006
Pacific	10	-62.569	112.873	0.682
\pm		0.222	0.743	0.004
S. America	9	-16.800	-129.631	0.121
\pm		1.593	2.051	0.003
Somalia	3	53.661	-89.542	0.309
\pm		3.650	8.988	0.019
Yangtze	3	59.425	-109.737	0.310
±		6.651	18.298	0.021

a Number of used sites

ITRFyy Eurasia Rotation Poles

Table 4: Estimation of \dot{R}_{YY}

	YY	$\dot{R}1$	$\dot{R}2$	$\dot{R}3$	
		mas/y	mas/y	mas/y	
	89	0.11	0.57	-0.71	
	90	0.11	0.57	-0.71	
	91	0.21	0.52	-0.68	
	92	0.21	0.52	-0.68	
	93	0.32	0.78	-0.67	
	94	0.20	0.50	-0.65	
	96	0.20	0.50	-0.65	
Velocity diff. at	97	0.20	0.50	-0.65	
the Equator ——	• 00	0.081	0.490	-0.792	
0.8 mm/yr &		± 0.021	± 0.008	± 0.026	
0.5 in Europe	05	(0.054)	0.518	-0.781	
		± 0.009	± 0.006	± 0.011	

ETRS89 Definition

- Coincides with ITRS at epoch 1989.0:
 - Definition at a reference epoch (1989.0)
 - The 7 parameters between ITRS and ETRS89 are zero at 1989.0
- Fixed to the stable part of the Eurasian plate
 - Co-moving with the plate: law of time evolution
 - Time derivatives of the transformation parameters are zero except the 3 rotation rates

ETRS89 Realization

- Expression in ITRF_{yy} at central epoch (t_c) of the implied observations
- **Expression in ETRS89 using 14 transformation** parameters some of them are zeros

Positions
$$X^{E}(t_{c}) = X_{YY}^{I}(t_{c}) + T_{YY} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times X_{YY}^{I}(t_{c}).(t_{c}-1989.0)$$

EUROPEAN TERRESTRIAL REFERENCE SYSTEM 89 (ETRS89)

Definition

The IAG Subcommision for the European Reference Frame (EUREF), following its Resolution 1 adopted in Firenze meeting in 1990, recommends that the terrestrial reference system to be adopted by EUREF will be coincident with ITRS at the epoch 1989.0 and fixed to the stable part of the Eurasian Plate. It will be named European Terrestrial Reference System 89 (ETRS89).

Realization

Following its definition, ETRS89 could be realized through several ways, and specifically:

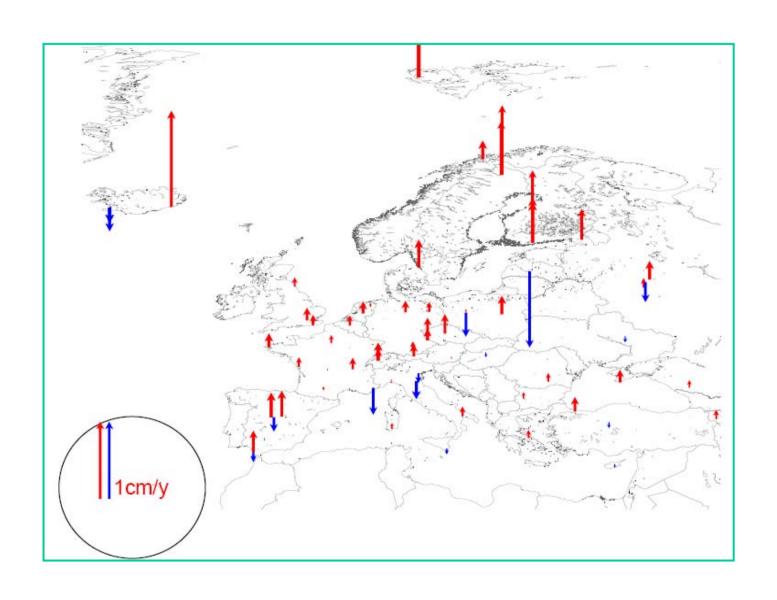
•using ITRS realizations: for each frame labelled ITRF $_{yy}$ a corresponding frame in ETRS89 can be computed and labelled ETRF $_{yy}$. The following ETRF solutions are presently available:

- •ETRF89
- **•ETRF90**
- •ETRF91
- •ETRF92
- •ETRF93
- •ETRF94
- •ETRF96
- **•ETRF97**
- •ETRF2000
- •ETRF2005
- •ETRF2005 (SINEX file)

•positioning with GPS measurements of a campaign or permanent stations: using recent $ITRF_{yy}$ station coordinates and IGS precise ephemerides following the procedure described in (Boucher and Altamimi, 2007): Postscript version, PDF version.

Consequences for ETRF2005

• T_{YY} : known at the 1 cm level


•
$$(t_c-1989.0)$$
 together with \dot{R}_{YY}

- Velocity change of 0.5 mm/yr produce position change by ~1 cm at epoch 2007
- Vertical velocities change by $1.8 \sin(\varphi) \, mm/yr$

ETRF2005 Horizontal Velocities

ETRF2005 Vertical Velocities

Conclusions

- ITRF2005 ==> ETRF2005:
 - Transformation uncertainty : ~ 1cm
 - Jumps in station positions to be expected when going from ETRF2000 to ETRF2005
- ETRF2005 internal consistency is not altered
- Revision/amendment of ETRS89 definition might be necessary