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Outlook

e Time series, after removal of empiric periodic terms
(annual, typically) follow in most case a power law
spectrum, with flicker phase (1/f) behavior at low (<2
cycles/yr) frequencies and white noise at higher
frequencies

e This property has been recognized, but never exploited

 Here | report on attempts to

— Filter the series, in order to investigate the existence of
stochastic signals buried in the noise, which may be relevant at
Improving the TRF and/or detecting a geophysically interesting
signal

— Predict the series, to help analysts to understand when a jump
occurs, in a most rigorous sense (i.e. not by ‘bare eye’)
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Example: BOGO
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BOGO: PSD after removal of periodic signals
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Resulting spectrum
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Noise description in detail (1/2)

Wiener approach to filtering Time
Series: y(t) =D a.x(t")
— Is based on weighting function v

— Examples: - ,
)f Gguss - Markov process R(z) =R(0)e ", withr =t-t

* ARMA or digital filter (e.g. FILTER
function in MATLAB y(t) = FILTER(A B, x)

" Collocation . castsauaIes g = B OX(OX(E DO ) + 075
=

Wiener Theorem on predicting a
Gauss Markov process: smoother

— The value of a random variable
predicted At ahead equals the last
observed value times the At

autocorrelation function evaluated T
at time At y_(t+At) = R(0)e T x(t)

— Corollary: for large At, the
predicted value of the r.v. tends to
zero, which is the mean (and most
probable) value of the r.v.



Noise description In detail (2/2)
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BOGO: Estimate of spectral index
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BOGO: Autocorrelation
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BOGO: raw data, filter and res
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Results from Wiener approach

We have tested two options:

— Gauss-Markov, with characteristic time T estimated from the autocorrelation
function

— Least squares collocation, with a smoother term of amplitude equal to the rms? of
the raw data

Results:
— GM tends to amplify the input signal

— LSQ is more effective in filtering the data, and is equivalent to force the data to
be a GM process with small T

Inference:

— Time series may be considered Gauss Markov processes, because the
autocorrelation looks like an exponential. However filtering the data with a
Wiener filter built on a GM process leads to noise amplification. Hence

* a) Wiener filter is unable to filter the noise
Or

* Db) the time series is only apparently Gauss Markov
Action in response to a) : try a Kalman filter in place of a Wiener Filter



Kalman approach

Based on recursive relation
rather than weighting
function

4 independent variables, 2
initial values:

— Covariance of the
measurement noise
R=cov(v,v) with y=¢y + Vv

— Covariance of process noise
Q=cov(w,w) with z=Hy+w

— Partial derivatives matrix H

— Characteristic time of Gauss
Markov process

And

— X _(0); P_(0) predicted initial
value for the random
variable and its Probability

T = 4 weeks(typical)
R= as varianceof processnoise (tbd:seelater)

2
Q= (1- e’ ja,i where o’ isthe varianceof the measurement noise (tbd : seelater)

Filter loop:

K(@i)=P_(@i)H[HP_(i)H + R] Kalmangain
filtered variableat t =1 :

y(i) = y_(i)+ K@®[x(i) - Hy_()]

P(i) =[1-K@)H]P_()

predicted variableat t =i +1.:
y_(i+1) = ¢y(i),asin Wiener filter
P_(i+1)=¢P(i)¢+Q



Example: filter the east of BOGO

Plot raw data
(green) and
filtered data

Kalman Filter
and LSQ
collocation
appear to be
equally
capable to
filter the noise

Rms=1.17
mm (raw)

Rms=0.52
mm (filtered)
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Example: predict the east of BOGO

 Plot raw data (green)
and predicted one
epoch ahead y L R R EERREEEEE ]

 Estimate variances of
measurement and
process noise so that
the rms of raw-y_ has
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Example:detect jump at BOGO

Time series
of BOGO |,
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modifieds
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Conclusion

Preliminary indication that time series look like
Gauss Markov processes (exponential
autocorrelation), with time constants of the order
of 3-5 weeks

Filtering the time series by either Kalman or
least squares collocation seems to significantly
reduce the rms (e.g. 1.1 0.5 mm).

The significance of the filtered signal remains to
be investigated by correlating to similar filtered
sighals from other stations

Where KF seems superior to LSQC is in the
detection of a jump (e.g. 5 mm jump)



