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Outlook

• Time series, after removal of empiric periodic terms 
(annual, typically) follow in most case a power law 
spectrum, with flicker phase (1/f) behavior at low (<2 
cycles/yr) frequencies and white noise at higher 
frequencies

• This property has been recognized, but never exploited
• Here I report on attempts to

– Filter the series, in order to investigate the existence of 
stochastic signals buried in the noise, which may be relevant at
improving the TRF and/or detecting a geophysically interesting 
signal

– Predict the series, to help analysts to  understand when a jump 
occurs, in a most rigorous sense (i.e. not by ‘bare eye’)



Example: BOGO

Left
• Green dots: raw 

series
• Superimposed 

black line: best 
fitting sinusoid

• Black dots: green 
minus sinusoid

Right
• Resulting spectrum 

(PSD)
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BOGO:  PSD after removal of periodic signals
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Noise description in detail (1/2)
• Wiener approach to filtering Time 

Series:
– Is based on weighting function 
– Examples: 

• Gauss - Markov process 
• ARMA or digital filter (e.g. FILTER 

function in MATLAB
• Special case: least squares 

collocation

• Wiener Theorem on predicting a 
Gauss Markov process:

– The value of a random variable 
predicted Δt ahead equals the last 
observed value times the 
autocorrelation function evaluated 
at time Δt

– Corollary: for large Δt, the 
predicted value of the r.v. tends to 
zero, which is the mean (and most 
probable) value of the r.v. 
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Noise description in detail (2/2)
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BOGO:  Estimate of spectral index
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BOGO:  Autocorrelation

 

 
data
Markov tau(wk)=4.3
Colloc.
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data
Markov tau(wk)=4.3
Colloc.
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data
Markov tau(wk)=3.8
Colloc.
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Results from Wiener approach
• We have tested two options:

– Gauss-Markov, with characteristic time T estimated from the autocorrelation 
function

– Least squares collocation, with a smoother term of amplitude equal to the rms2 of 
the raw data

• Results: 
– GM tends to amplify the input signal
– LSQ is more effective in filtering the data, and is equivalent to force the data to 

be a GM process with small T
• Inference: 

– Time series may be considered Gauss Markov processes, because the 
autocorrelation looks like an exponential. However filtering the data with a 
Wiener filter built on a GM process leads to noise amplification. Hence 

• a) Wiener filter is unable to filter the noise 
Or
• b) the time series is only apparently Gauss Markov

• Action in response to a) : try a Kalman filter in place of a Wiener Filter



Kalman approach

• Based on recursive relation 
rather than weighting 
function

• 4 independent variables, 2 
initial values:
– Covariance of the 

measurement noise 
R=cov(v,v) with y=φy_+ v

– Covariance of process noise 
Q=cov(w,w) with z=Hy+w

– Partial derivatives matrix H
– Characteristic time of Gauss 

Markov process
And
– X_(0); P_(0) predicted initial 

value for the random 
variable and its Probability  
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Example: filter the east of BOGO

• Plot raw data 
(green) and 
filtered data 

• Kalman Filter 
and LSQ 
collocation 
appear to be 
equally 
capable to 
filter the noise

• Rms=1.17 
mm (raw)

• Rms=0.52 
mm (filtered)
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Example: predict the east of BOGO

• Plot raw data (green) 
and predicted one 
epoch ahead y_

• Estimate variances of 
measurement and 
process noise so that 
the rms of raw-y_ has 
a minimum

• We find for process 
and measurement 
noise respectively:

0.5 mm and 1.2 mm

Note: the rms of the raw 
data was 1.13 mm
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Example:detect jump at BOGO

Time series 
of BOGO 
east was 
modified 
adding -5 
mm since 
wk 1371

LSQ coll
appears 
slower 
than KF to 
track the 
change
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Conclusion

• Preliminary indication that time series look like 
Gauss Markov processes (exponential 
autocorrelation), with time constants of the order 
of 3-5 weeks

• Filtering the time series by either Kalman or 
least squares collocation seems to significantly 
reduce the rms (e.g. 1.1 0.5 mm). 

• The significance of the filtered signal remains to 
be investigated by correlating to similar filtered 
signals from other stations

• Where KF seems superior to LSQC is in the 
detection of a jump (e.g. 5 mm jump)


