DORIS: Introduction to Bernese GPS Software

Petr Štěpánek	(1)
Urs Hugentobler	(2)
Karin Le Bail	(3)

- 1. Research Institute of Geodesy, Kartography and Topography, Zdiby
- 2. University of Bern
- 3. Institut Géographique National, Marne La Valee

DORIS, the basic facts

- Based on Doppler effect (frequency shift measured)
- Designed 1982 for POSEIDON mission
- Receivers are on board, Transmitters ground stations
- Two frequencies ~ 2 GHz , 400 MHz
- First used 1990 for SPOT-2
- One of four IERS techniques
- Over 50 Stations, 17 collocations with GPS
- IDS International Doris Service

CDDIS DORIS Data (1)

Transformation to RANGE RATE (average Doppler velocity) V

V = (c/fb) (fb - fs - D/T)

fb = beacon frequency

fs = satellite (receiver) frequency

D = number of cycles

T = time interval

c = velocity of light

Version 1.0: fb,fs nominal

Version 2.0: fb,fs estimated

Version 2.1: fb nominal, fs estimated

CDDIS DORIS Data (2)

Corrections: ionosphere, troposphere, centre of mass

Other data: preprocessing indicator, Atmosphere data

Transformation between on board clock and TAI (for transformation coefficients are used pseudorange observations between satellite and master beacon)

$$T = t + a_0 + a_1(t - t_0) + a_2(t - t_0)^2$$

T = TAI, t = on board time, a_i = estimated coefficients

For satellite frequency estimation

 $f_{s} = f_{s(nominal)} (1 + a_{1} + 2a_{2} (t - t_{0}))$

For version 1.0 CDDIS format used higher polynom degree

Only 2 GHz frequency observation, 400 MHz observation used only to compute the ionosphere correction

Implementation into Bernese GPS software

Bernese GPS software – developed in AIUB

Input DORIS data: CDDIS

First step: Old 2.0 format data processing, all corrections applied

Second step: format 2.1 data processing, beacon frequency offset and troposphere estimation

Transformation of Range rate to difference between two pseudoranges $\Delta R = -TV$

GPS – like approach

One DORIS observation is divided into two parts (two pseudoobservations):

Beginning: 100 km new ambiguity flag

- End: 100 km + observation
- $\Phi_1 = \rho(t_1) + A \equiv 0$
- $\Phi_2 = \rho(t_2) + A$

...

...

 $\Delta \Phi \equiv \Phi_2 - \Phi_1 = \rho(t_2) - \rho(t_1)$

•Constant 100 km is used to have always a positive value

•Ambiguities A are eliminated before NEQ inversion

•In principle is possible in the case of new receivers use phase –like processing

Beginning: 100 km new ambiguity flag

- Next: 100 km + observation1
- **Next: 100 km + observation1 + observation2**

DORIS in Bernese software

Parameter estimation tests

•Processed data: Jason june 2002, Jason may 2003, Topex may 2003, Spot 2 may 2003

•Network and beacon frequency estimation: POE orbit fixed, CDDIS troposphere, Network + Beacon Frequency estimated

•Orbit estimation (Topex & Jason): Monthly Network estimates fixed, CDDIS troposphere, GPS Dynamic orbit model, beacon frequency estimated. Some additional estimates with low constrained network.

•Troposphere estimation: Orbit fixed or estimated, Beacon frequency fixed or estimated, network fixed, troposphere estimated

Network Estimation

SOLUTION COMPARISON	Complete Earth surface			'South Atlantic' area excluded		
	Lat. (cm)	Long.(cm)	Height(cm)	Lat.(cm)	Long. (cm)	Height(cm)
Jmay03 - IGN	18.6	6.5	14.3	11.2	5.7	13.9
Jmay03-Jjun02	10.8	6.9	6.2	4.9	6.2	5.2
Jmay03-Tmay03	15.8	6.2	8.1	4.8	5.2	4.9
Tmay03 - IGN	7.0	3.8	6.9	X	X	X
S2may03 - IGN	8.2	3.2	6.5	X	X	X
Tmay03-S2may03	2.6	4.0	3.1	X	X	X
S2Tmay03- IGN	8.1	2.8	6.2	X	X	X

Repeatability of individual weakly solutions ~ 4-5 cm in 3D position

JASON ORBIT ESTIMATION, FIXED NETWORK

DIFFERENCE BETWEEN	After Helmert transformation			Before Hel	Before Helmert transformation		
	Radial (cm)	Along (cm)	Out (cm)	Radial (cm)	Along (cm)	Out (cm)	
10. 5. 2003	2.1	5.2	3.7	4.3	5.2	9.3	
15. 5. 2003	3.1	7.3	9.7	3.2	7.6	13.3	
20. 5. 2003	3.0	7.6	4.9	3.7	7.7	8.2	
25. 5. 2003	2.1	5.3	5.8	3.3	5.6	9.4	
30. 5. 2003	2.2	6.4	4.4	3.7	6.7	8.6	
average	2.5	6.4	5.7	3.6	6.6	9.8	

TOPEX ORBIT ESTIMATION, FIXED NETWORK

DIFFERENCE BETWEEN	After Helmert transformation			Before Hel	Before Helmert transformation		
	Radial (cm)	Along (cm)	Out (cm)	Radial (cm)	Along (cm)	Out (cm)	
10. 5. 2003	2.2	5.5	4.3	4.3	5.6	12.2	
15. 5. 2003	3.2	7.9	7.6	4.3	8.0	9.5	
20. 5. 2003	3.1	7.9	6.2	4.1	8.3	12.1	
25. 5. 2003	2.1	4.8	5.7	2.6	5.9	6.1	
30. 5. 2003	2.6	6.2	4.8	4.4	7.5	12.2	
average	2.6	6.5	5.7	3.9	7.1	10.4	

6.3

Bern DORIS

Beacon frequency offset estimation

Topex and Spot 2 solutions for chosen stations

Topex, Spot 2 and Jason solutions comparison

ESTIMATED FREQUENCY OFFSET FOR STATION FUTB

Troposphere estimation

•APRIORI MODEL: Saastamoinen with dry Niel mapping funkcion

•ESTIMATED: wet Niel mapping function, Constant behaviour during the path

•RMS of Troposphere Zenith delay ~ 1 cm

•Relative difference from CDDIS correction ~ 1%

Orbit estimated with different troposphere

