

	WHY DO WE NEED REFLECTORS AND TRANSPONDERS TO CONNECT INSAR?	
	 Answer, we don't necessarily have to, we can also use natural persistent and coherent scatterers, but co-located instruments have advantages. 	
	There two options	
	 Use natural persistent scatterers. These are not the same EM points for different tracks and systems, but the tracks and systems can be combined using the (first moment of) estimated velocity of the disjunct scatterers in the same area. The strength of this technique comes in numbers (of scatterers). Combination in the parameter space. 	
	2. Use artificial scatterers (transponders and reflectors) with the same EM point in different tracks and for different systems. The deformation time-series (and velocity) should be the same for each track and system (after conversion for line-of-sight direction). The strength of this technique comes from the well-identifiable reflector or transponder. Combination in observation space.	
	 For the connection between InSAR and other techniques the artificial scatterer must be integrated with other equipment, e.g. a GNSS receiver. 	
ŤU Delft	• For the best results a mechanical connection between the instrumentation at one site should be used.	3

4

	RESULTS MUTE PROJECT										
	Aver	age RCS values MUTEs:				у)					
		Average RCS [dBm2] S1	MUTE-1 34.3 29.7	MUTE-2 39.9 30.5							
		107	23.1	50.5							
	• RMS	error RCS MUTE's 0.4-0	.8 dBm2								
	 Exce After 	ellent short term phase sta r fitting 2 nd degree polynor 0.3-0.7 mm rms for S1	bility mial:	 Deliberative vertical 7 mm shift of MUTE-1 recovered within 50% reliability interval for 11 out of 12 combinations (1 within 95% reliability) 							
	•	0.2-0.4 mm rms for TSX									
	• Non-	linear trends in phase dat	a possibly related to								
4	•	Motion of the pole									
ŤU Delft	•	Temperature correction (u	under investigation)			32					

DBF90	90T-GNSS AND DBF90X-GNSS RESULTS							
			DBF90T			DBF90X		
	Track	Mean RCS [dBm2]	Std RCS [dBm2]	Std DD phase [mm]	Mean RCS [dBm2]	Std RCS [dBm2]	Std DD phase [mm]	
	s1_dsc_t110_swath2_burst4 s1_dsc_t037_swath3_burst3	28.89 28.66	0.59 0.56	0.33 0.09	35.74 35.14	0.31 0.30	0.64 0.17	
	s1_asc_t161_swath3_burst3 s1_asc_t088_swath1_burst3	28.87 27.80	0.42 0.83	0.39 0.29	35.34 35.56	0.12 0.09	0.45 0.34	
	average	28.55	0.60	0.28	35.44	0.21	0.40	
S	tandard deviation in DD pl	nase is 0.3	3-0.4 mm	in equivale	ent line-of	-sight.		

	ECF	RESULTS					
	Ta	ble 1. Incidence and off boresigh	t angles for various Senti	nel-1 tracks (ant	enna boresight	t angle is 38	degrees.)
	-		Incidence angle	Off boresight	Mean RCS	Std RCS	Std DD phase
			[deg]	[deg]	[dBm ²]	$[dBm^2]$	mm
	ECR1	dsc t110 swath2 burst4	36.68	-1.32	34.5	1.74	0.84
		dsc t037 swath3 burst3	44.64	6.64	29.6	2.05	0.91
	ECR2	ase t161 swath3 burst3	41.77	3.77	32.0	0.39	0.73
		asc t088 swath1 burst3	33.23	-4.77	32.6	0.59	1.15
	ECR3	ase t161 swath3 burst3	41.77	3.77	29.8	0.50	0.58
		ase t088 swath1 burst3	33.23	-4.77	32.1	0.49	0.48
	• RC	S comparable to 1.03 m triang	ular corner reflector				
	• Pha	ase precision is in the order of	an equivalent displace	ment of 0.5 mn	۱.		
ŤU Delft							4
							т Т

