* * * * * * * * *

ROYAL DBSERVATORY OF BELGIUM

Guidelines for EUREF Densifications

Carine Bruyninx, ROB

EUREF Tutorial May 24, 2016 San Sebastian, Spain

ROYAL OBSERVATORY OF BELGIUM

Ψ.

EPN CB: www.epncb.oma.be

HOME ORGANISATION - NETWORK & DATA - PRODUCTS & SERVICES -	DOCUMENTATION - NEWS, EVENTS & LINKS -
	Formats
Welcome !	Guidelines
	Equipment & calibration
	Papers
EUREF Permanent GNSS Network	FAQ tation Links
	Information Coordinates

The European Terrestrial Reference System 89 (ETRS89) is used as the standard precise GPS coordinate system throughout Europe. Supported by EuroGeographics and endorsed by the EU, this reference system forms the backbone for all geographic and geodynamic projects on the European territory both on a national as on an international level.

The ETRS89 is maintained by the IAG subcommission EUREF and it is accessed through the EUREF Permanent GNSS Network (EPN), a science-driven network of continuously operating GPS reference stations with precisely known coordinates in the ETRS89.

All contributions to the EPN are voluntary, with more than 100 European agencies/universities involved, and the reliability of the network is based on redundancy and extensive guidelines guaranteeing the quality of the raw GPS

Last Updated/New Pages

- 2016-04-14 : Official ITRF2014 coordinates/velocities issued by the IERS added to the individual station coordinates web page (e.g. ACOR00ESP).
- 2016-02-02: New page showing the actual tracking status.

2016-01-29 : Real-time web page updated.

More ...

(select a station)

Next Meetings

PRODUCTS & SERVICES -

DOCUMENTATION - N

NEWS, EVENTS & LINKS -

Home / Documentation / Guidelines

Guidelines

EPN Guidelines

Procedure for Becoming an EPN Station Guidelines for EPN Stations and Operational Centres Guidelines for EPN Data Centres & EPN Broadcasters Guidelines for EPN Analysis Centres

EUREF Guidelines

specifications for kererence marine mining in the Analysis of a Loker of 5 campaign	Last apuated. April 27, 2011
Guidelines for EUREF Densifications (previously know as "EUREF Campaign Guidelines")	Last updated: May 28, 2013
IGS Guidelines	
IGS New Site Checklist	Last updated: December 21, 2006
IGS Site Guidelines	Last updated: July 06, 2015
Monumentation Design and Implementation Recommendations	Last updated: September 22, 2009

Recommendations

CSTG guidelines for "The International Space Geodetic and Gravimetric Network (ISGN)"

Real-Time GNSS in Routine EPN Operations (Concept)

Last updated: January 11, 2001 Last updated: December 03, 2006

ROYAL OBSERVATORY OF BELGIUM

Last updated: December 18, 2013	
Last updated: October 26, 2015	
Last updated: March 17, 2015	
Last updated: New 10, 2012	

Last updated: Nov. 19, 2013

ROYAL BSERVATOR

ftp://epncb.oma.be/pub/general/Guidelines_ for_EUREF_Densifications.pdf

IAG sub-commission for the European Reference Frame - EUREF

Page 1 of 9

Guidelines for EUREF Densifications

C. Bruyninx¹, Z. Altamimi, A. Caporali, A. Kenyeres, M. Lidberg, G. Stangl, and J.A. Torres Questions or remarks can be directed to epncb@oma.be

Version 1: 26-05-2009 Version 2: 04-05-2010: Minor corrections/clarifications based on user feedback Version 3: 24-05-2012: Encourage the use of GLONASS observations Version 4: 13-06-2012: Modified links due to the EPN CB web site restructuring Version 5: 28-05-2013: Replacement of ITRF2005 with IGb08 and additional clarifications

This document outlines the procedure recommended for computing station coordinates in the ETRS89 (European Terrestrial Reference System), in particular in the framework of national densifications of the ETRS89. The document also describes how to proceed to request a EUREF validation of the densification.

1	late	aduction 1
1.	inur	Douction1
2.	EUR	EF Densification of the ITRF
3.	GNS	S Data Analysis
	3.1	GNSS Data from the Densification Area
	3.2	Reference Stations4
	3.3	Orbits and Earth Rotation Parameters4
	3.4	GNSS Processing Method4
4	Stac	king and Datum Definition5
	4.1	Velocity Estimation5
	4.2	Optional Combination with EPN SINEX Solutions5
	4.3	Stacking and Computation of ITRS Coordinates5
	4.4	Transformation to ETRS895
5	Veri	fication6
6	Sum	mary of the Procedure7
7	Vali	dation and Deliverables7
	7.1	Report to EUREF TWG7
	7.2	Deliverables

ROYAL OBSERVATORY OF BELGIUM

* **** ****

ROYAL OBSERVATORY OF BELGIUM

Goal of this document

Guidelines to

- derive positions/velocities expressed in the ETRS89 using data from the EUREF
 Permanent Network
- report to the TWG about the computation in case a validation of the ETRS89 densification is desired

* **** ****

ROYAL DBSERVATORY OF BELGIUM

Selection of the GNSS Network

GNSS Data – Densification sites

These are the stations for which you wish to submit new ETRS89 coordinates to the EUREF TWG for validation

- They are NOT EPN stations
- Equipment should comply with requirements for EPN stations, see "Guidelines for EPN Stations and Operational Centers"
- Antenna/radome with absolute antenna calibrations (same requirements as for an EPN station)
- At least 3 days / 24 hours observations

ROYAL OBSERVATORY OF BELGIUM

ROYAL BSERVATORY OF BELGIUM

GNSS Data – Reference Stations

LAST ITRS densification of the EPN:

EPN class A stations (EPN_A_IGb08.SSC, POS+VEL)

Step 1:

Select

- at least 5 Class A EPN reference stations around the densification area (the more the better, and the larger the geographical area, the better)
- + all Class A EPN stations in the densification area

Step 2

Check for each station from step 1 time series at EPN CB

- Data availability during densification
- Antenna change during densification and after date of last Class A realisation
- Avoid stations with noisy time series or large periodic signals

ROYAL BSERVATORY OF BELGIUM

GNSS Data – Reference Stations

LAST ITRS densification of the EPN:

ftp://epncb.oma.be/pub/station/coord/EPN

EPN class A stations

EPN_A_IGb08.SSC \rightarrow EPN_A_IGb08_C1875.SSC (POS+VEL)EPN_A_IGb08.SNX.Z \rightarrow EPN_A_IGb08_C1875.SNX.Z

		CLASS_A EPN REFERENCE FF	STATI	ION PO	SITIONS AND V	ELOCITIES OF 2005.0								
		CUMULATIVE S	SOLUTI	ION OF	GPSWEEKS [834 - 1875 1								
		RELEASE NAME	E: EPN	A IG	b08 C1875									
		RELEASED ON	19/02	2/2016	BY EPN REFER	ENCE FRAME CO	ORDINATOR (AME	RUS KEI	VYERES,	FOMI,	HUNG	ARY)		
DOMES NB.	SITE	NAME	TECH.	ID.	X/Vx	Y/Vy	Z/Vz		Sigmas		SOLN	DATA START	DATA END	REF. EPOCH
		CLASS					m/m/Y					-	_	
13434M001	ACOR		GPS	ACOR	4594489.710	-678367.775	4357066.136	0.001	0.000	0.001	1 9	99:237:00000	00:001:86370	05:001:00000
13434M001		A			-0.0098	0.0228	0.0104	0.0001	0.0000	0.0001				
13434M001	ACOR		GPS	ACOR	4594489.706	-678367.770	4357066.139	0.000	0.000	0.000	2 (0:044:00000	07:031:86370	05:001:00000
13434M001		Α			-0.0098	0.0228	0.0104	0.0001	0.0000	0.0000				
13434M001	ACOR		GPS	ACOR	4594489.704	-678367.773	4357066.134	0.000	0.000	0.000	3 (07:091:00000	15:353:86370	05:001:00000
13434M001		A			-0.0098	0.0228	0.0105	0.0001	0.0000	0.0000				
10077M005	AJAC		GPS	AJAC	4696989.433	723994.475	4239678.541	0.000	0.000	0.000	1 (0:022:00000	08:221:86370	05:001:00000
10077M005		A			-0.0136	0.0194	0.0120	0.0001	0.0000	0.0001				
10077M005	AJAC		GPS	AJAC	4696989.438	723994.465	4239678.548	0.000	0.000	0.000	2 (08:354:00000	12:343:86370	05:001:00000
10077M005		A			-0.0136	0.0194	0.0120	0.0001	0.0000	0.0001				
10077M005	AJAC		GPS	AJAC	4696989.437	723994.475	4239678.546	0.001	0.000	0.001	3 1	L2:344:00000	15:331:86370	05:001:00000
10077M005		A			-0.0136	0.0194	0.0120	0.0001	0.0000	0.0001				
13433M001	ALAC		GPS	ALAC	5009051.189	-42072.196	3935057.741	0.000	0.000	0.000	1 9	99:215:00000	06:050:00000	05:001:00000
13433M001		Α			-0.0100	0.0201	0.0133	0.0001	0.0000	0.0001				
13433M001	ALAC		GPS	ALAC	5009051.188	-42072.202	3935057.742	0.000	0.000	0.000	2 (06:204:00000	10:261:00000	05:001:00000

		CLASS_A EPN REFERENCE FR CUMULATIVE S RELEASE NAME RELEASED ON	STATI RAME: SOLUTI E: EPN 19/02	ON PO IG ON OF [_A_IG 2/2016	SITIONS AND V b08 AT EPOCH GPSWEEKS [b08_C1875 BY EPN REFER	ELOCITIES OF 2005.0 834 - 1875 ENCE FRAME] COORDINATOR (AME	BRUS KEI	NYERES,	FOMI,	HUNG	ARY)		
DOMES NB.	SITE	NAME	TECH.	ID.	X/Vx	Y/Vy	Z/Vz		Sigmas		SOLN	DATA_START	DATA_END	REF. EPOCH
	(CLASS					m/m/Y							
13434M001	ACOR		GPS	ACOR	4594489.710	-678367.77	5 4357066.136	0.001	0.000	0.001	. 1	99:237:00000	00:001:86370	05:001:00000
13434M001		A			-0.0098	0.022	8 0.0104	0.0001	0.0000	0.0001				
13434M001	ACOR		GPS	ACOR	4594489.706	-678367.77	0 4357066.139	0.000	0.000	0.000	2	00:044:00000	07:031:86370	05:001:00000
13434M001		A			-0.0098	0.022	8 0.0104	0.0001	0.0000	0.0000)			
13434M001	ACOR		GPS	ACOR	4594489.704	-678367.77	3 4357066.134	0.000	0.000	0.000) 3	07:091:00000	15:353:86370	05:001:00000
13434M001		Α			-0.0098	0.022	8 0.0105	0.0001	0.0000	0.0000)			
10077M005	AJAC		GPS	AJAC	4696989.433	723994.47	5 4239678.541	0.000	0.000	0.000) 1	00:022:00000	08:221:86370	05:001:00000
10077M005		λ			-0.0136	0 010	/ 0.0120	0 0001	0 0000	0 0001				

Last data for ACOR included: 353/2015

Campaign period included in period covered by Class A coordinates

OK, ACOR can be used as reference station

Campaign period not included in period covered by Class A coordinates (more recent campaign)

Check ACOR time series (quick update) and verify no coord jump since last Class A computation

http://epncb.oma.be/_productsservices/timeseries

PRODUCTS & SERVICES > POSITION TIME SERIES > ACOR00ESP (A Coruna, Spain)

EPN station position time series:

(select a station)

Other residual position time series: ITRF2008

MULTI-YEAR EPN SOLUTION

Official, solutions included up to December 13, 2015 (GPS wk 1875)

Residual position time series of the cumulative EPN solution (tied to IGS08) with as input:

- 1. the reprocessed weekly EPN solutions up to GPS week 1408 (corrected to be in accordance with the epn_08.atx antenna calibration model)
- 2. the weekly (routine) EPN solutions from GPS week 1409 till 1631 (corrected to be in accordance with the epn_08.atx antenna calibration model)
- 3. the weekly (routine) EPN solutions from GPS week 1632 till 1875

The North, East, Up-components are the position residuals with respect to the estimated station positions and velocities. During the estimation, position outliers have been eliminated and discontinuities have been introduced.

Display outliers eliminated from combination: 1141-1141, 1176-1233 Display estimated position shifts Download residual time series data

Extended, solutions included up to May 11, 2016 (GPS wk 1896 dow 3)

Residual position time series of the cumulative EPN solution with as input:

- the reprocessed weekly EPN solutions up to GPS week 1408 (corrected to be in accordance with the epn_08.atx antenna calibration model)
- the weekly (routine) EPN solutions from GPS week 1409 till 1631 (corrected to be in accordance with the epn_08.atx antenna calibration model)
- 3. the weekly (routine) EPN solutions, from GPS week 1632 till 1680
- 4. the weekly (routine) EPN solutions, from GPS week 1681 till 1891
- 5. the daily (routine) EPN solutions, from GPS week 1892 dow 0 till GPS week 1896 dow 3

The North, East, Up-components are the position residuals of each weekly (or daily) solution with respect to the estimated station positions and velocities.

Parts 1), 2) and 3) correspond to the latest official EPN solution and have been corrected for outliers and discontinuities.

ROYAL ATORY

GIUM

MULTI-YEAR EPN SOLUTION

Official, solutions included up to December 13, 2015 (GPS wk 1875)

Extended, solutions included up to May 11, 2016 (GPS wk 1896 dow 3)

Residual po

- 1. the repl antenna
- 2. the wee
- antenna
- 3. the wee
- 4. the wee
- 5. the dail

ROYAL OBSERVATORY OF BELGIUM

* **** ****

ROYAL DBSERVATORY OF BELGIUM

GNSS Data Analysis

GNSS Processing Options

Conform with procedure used by EPN Analysis Centers

- Final IGS orbits and ERP (from IGS AC also accepted)
- Absolute antenna calibrations + individual where available <u>ftp://epncb.oma.be/pub/station/general/epn_08.atx</u>
- Daily network solutions (minimally constrained)

Guidelines for EPN Analysis Centres: <u>http://epncb.oma.be/_organisation/guidelines/proc_opt.pdf</u>

* **** ****

ROYAL DBSERVATORY OF BELGIUM

Stacking and Datum Definition

Velocity Estimation?

- Stacking of daily network solutions
 → positions (& velocities?)
- If 3+ years \rightarrow velocity estimation
- If 3- years:
 - if station coordinates in ETRS89 change due to intraplate deformations by more than 1 cm over project duration
 - \rightarrow Velocity estimation

***** ****

ROYAL OBSERVATORY OF BELGIUM

Daily Stacking

- Goal to
 - create time series of daily coordinates
 - estimate coordinates (and velocities) for all stations included in the network (densification & reference stations)
- Input in the stacking:
 - daily SNX files
 - Reference station network information:

SSC file (coordinates & velocities) EPN_A_IGb08.SSC take into account Epoch of coordinates Solution numbers

(discontinuities + LINK)

SNX file EPN_A_IGb08.SNX

Reference Frame Alignment of Stacked Solution

Use Minimal Constraints :

Only coordinates

Coordinates and velocities

Recommendation on which parameters depends on software

- Translation only
- ...
- 7 parameters

Results

- ITRS (IGb08) coordinates @ epoch of observation
 - densification stations
 - reference stations
- ITRS (IGb08) coordinates and velocities
 - densification stations
 - reference stations

* **** ****

> ROYAL DBSERVATORY OF BELGIUM

Transformation to ETRS89

- Convert estimated
 - ITRFyy positions at t_{obs}
 - ITRFyy positions and velocities
- to ETRS89 (Memo by Boucher and Altamimi)
 - ETRF2000 (current standard frame) for new projects
 - ETRFyy for comparisons with coordinates from previous national frames can be made

http://epncb.oma.be/_productsservices/coord_trans/

**** ****

ROYAL OBSERVATORY OF BELGIUM

Verification

Verifications

- <u>Daily coordinate repeatability</u> (in North, East, Up)
 - ~1mm in the horizontal, ~3mm in the vertical

<u>Quality of chosen reference stations</u>

Agreement of estimated positions (and velocities) of the EPN reference stations with the reference positions (and velocities) EPN_A_IGb08.SSC

- < 10 mm in position, < 3 mm/yr in velocity \rightarrow OK
- 10+ mm in position or/and 3 mm/yr in velocity → Eliminate affected station from list of reference stations (try to understand why – time series)

OBSERVATORY OF BELGIUM

**** ****

ROYAL OBSERVATORY OF BELGIUM

Verifications

- <u>No velocity estimation?</u>:
 - Check variation of ETRS89 positions over time. If more than 1 cm, then site velocities should have been estimated.

- Validity of ETRS89 coordinates:
 - Compare estimated ETRFyy coordinates with the ETRFyy coordinates obtained from previous EUREF densification campaigns (make sure to transform in same ETRS89 frame).

* **** ****

ROYAL DBSERVATORY OF BELGIUM

Summary of the Procedure

* **** ****

ROYAL DBSERVATORY OF BELGIUM

Validation by TWG: Report & Deliverables

Steps

* **** ****

ROYAL DBSERVATORY OF BELGIUM

- Announce to TWG chair one month prior to TWG
- Submit written report at least 2 weeks prior to TWG
- Present results at TWG

Report

- Description of the densification project
 - List of densification stations (full names, 4-char ID, domes numbers, map), Observation period (permanent, campaign type)
 - GNSS equipment (IGS standard names for receiver and antenna/radome), Monument description
- Description of other data used in the processing
 - Identification of Class A solution + List of chosen reference stations (including discontinuities applied)
 - List of verifications performed to check their performance during the densification project
 - If used, list of EPN SINEX solutions
 - List of orbits, ERP, Antenna calibration models

ROYAL OBSERVATORY OF BELGIUM

Report

Description of processing strategy

- Software (and version), Schematic processing method, Elevation cut off, Positioning mode (double difference network mode, ...), Modeling of loading effects, Ambiguity resolution strategy, Modeling of troposphere (e.g. a priori model, mapping function, constraints, gradients, ...), Modeling of ionosphere (e.g. higher order corrections)
- Optional: alternative strategies for test purposes
- Method for combining daily network solutions in one densification solution, Parameters used in minimal constraints

Results from the GNSS processing

- Daily mean ambiguity resolution percentages
- Comparison of the daily coordinates solutions (repeatability in North, East and Up). Outliers and discontinuities should be identified, explained and eliminated. Comparison between estimated ITRF coordinates and latest EUREF densification of ITRF (indicate which one was used) for reference stations
- Transformation to the ETRS89 (frame, including parameters used)
- Comparison between new ETRS89 coordinates and ETRS89 coordinates from previous ETRS89 densifications

ROYAL

Deliverables

- Site logs
- Minimally constrained solution in the SINEX format
- List of positions for all stations in the network in the ITRFyy at epoch of observation

or

List of positions & velocities of all stations in the network in the ITRFyy (for densification projects requiring velocity estimation)

• List of positions for all stations in the network in the ETRS89 (indicate the frame used) at epoch of observation

or

List of positions & velocities for all stations in the network in the ETRS89 (indicate the frame used)

- List of reference stations
- ITRFyy coordinates and velocities (+ discontinuities) used for the reference sites

ROYAL

Soon

• IGb08 → IGS14

Questions?

ROYAL OBSERVATORY OF BELGIUM

