

The geodetic infrastructure for height determination in Germany

Martina Sacher¹, Gunter Liebsch¹, Cord-Hinrich Jahn²

¹Federal Agency for Cartography and Geodesy (BKG)

²Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany (AdV)

Contents

- Organization and responsibilities for surveying and mapping in Germany
- 2. Integrated geodetic spatial reference in Germany
- Project for the modernization of the German height reference frame
- 4. New quasigeoid model for Germany

Organization and responsibilities for surveying and mapping in Germany

- Shared responsibilities for Surveying and mapping because of the federal structure of Germany
- 16 Federal states responsible for official surveying and mapping, each with its own legal foundations and different resources
- Tasks of BKG have been determined in federal law, e.g.
 - geodetic reference systems and frames in Germany
 - connection between German, European and international reference frames and systems
- Cooperation of the federal states and BKG is coordinated by AdV (Working Committee of the Surveying Authorities of the Laender of the Federal Republic of Germany)
- Guidelines for the uniform integrated geodetic spatial reference for Germany (2006, 2014) are one result of this cooperation

Description of the Guidelines

- Official reference systems in Germany
- Their realizations (first order networks)
- The 4 different kinds of benchmarks and networks
 - Fundamental survey marker (GNSS, leveling and gravity measurements)
 - Height benchmarks (leveling)
 - Gravity benchmarks (absolute or relative gravity observations)
 - Permanent GNSS reference stations (basis for positioning service)
 - For each of these types of benchmarks and networks
 - Definition and purpose
 - Density of the benchmarks in the networks
 - Design of the survey marker and number of control points
 - Precision of the coordinates
 - Intervals for inspection and regional re-measurements
 - cycles for the resurvey of the entire network
- The height reference surface (quasi-geoid)

Integrated geodetic spatial reference

- consistent approach of geometric (positioning) and physical (height and gravity) components of geodetic spatial reference
- Essential for the determination of the height reference surface (quasigeoid) and GNSS heighting
- Fundamental survey marker: long-term stability of the monuments; optimal conditions for GNSS and gravity observations; connection to the first order levelling network (no permanent reference stations on roofs!)

GREF - Integrated Geodetic Reference network of Germany

- BKG's permanent reference station network
- Construction of the network since the mid-90s
- Long-term stable pillars made of concrete or steel
- depth of the foundation up to 15m depending on the geological conditions at the station
- Protection against environmental influences

Hörnum

Borkum-

Helgoland[®]

Kiel-Holtenau Warnemünde

Diepholz Braunschweig

Reference systems and frames in Germany

1. Spatial reference

- Reference system: ETRS89 (GRS80, non tide)
- First realization: ETRF91 official name ETRS89/DREF91 (1994)
- Current realization: ETRS89/DREF91(2002)

2. Physical Heights

- Datum: Normaal Amsterdams Peil (NAP)
- Kind: normal heights, GRS80
- Permanent solid earth tide correction: no corrections applied (mean tide)
- Current realization: DHHN92 (measurements 1974 1992)

3. Gravity

- Absolute gravity measurements
- Permanent solid earth tide correction: zero tide
- Current realization: DSGN94, DHSN96

Modernization of the German height reference frame - motivation

Parts of DHHN92

- Current network DHHN92 is compounded by 3 networks from different epochs (East:1974-1982, West: 1977-1988, connection measurements 1990-1992)
- In 2000 levelings about 30 years old
- Point damage 3-5% per year
- height variations because of mining (coal, gas, salt)
- 2002: first considerations about the modernization of the German height reference frame
- 2002-2005: planning stage (overall concept; guidelines describing the technology of the different observation techniques; error margins; total cost estimate; ...)

Modernization of the German height reference frame - objectives

Design of the new network

- Investigation and modernization of the height reference frame
- Detection of height variations and network strains
- improvement of German quasigeoid, improved possibility of height determination with GNSS methods and SAPOS®
- Integration of geometric and physical components of the spatial reference

Modernization of the German height reference frame – network configuration

- leveling, GNSS and gravity (mostly absolute) measurements on 250 identical points
- GNSS observation campaign in May/June 2008 (middle of levelling epoch, period of low solar activity)
- 2 X 24 h observation
- 250 stations are the backbone of the Geodetic Fundamental Network

- Leveling lines epoch 2006-2012
- Stations of the GNSS campaign 2008

New German height reference frame – Standards and conventions for the German Height System and its realization

Specification	New realization (DHHN2016)	Current realization (DHHN92)	
datum	NAP		
scale	SI - Meter		
realization of the scale	rod scale and temperature correction, determined by vertical comparator	rod scale and temperature correction	
adjustment	free		
realization of the datum	72 points (7 underground benchmarks + 62 GNSS+ 3 ref. stations)	1 point	
heights of the datum points	heights from DHHN92, no velocity supposed	geopotential number from UELN 73/86, no velocity supposed	
physical parameter	normal gravity field of GRS80		
kind of heights	normal heights		
tidal effects	mean tide, variable part eliminated	mean tide, variable part not eliminated	
ocean load effects	eliminated (in Northern Germany)	not eliminated	

New German height reference frame DHHN2016 – statistical data

- Total length of leveling lines: 29 809 km (113% of DHHN92)
- only 14 000 km originally planned
- Measurements between 2006 and 2012
- 2 computing centers with different software and approaches (adjustment of geopotential numbers or normal heights)

Final network design in comparison to the original draft

Parameters of the adjustment

Parameter	DHHN92 (without	DHHN2016
	observations of	
	neighboring countries)	
Number of lines	672	991
Number of nodal points	422	680
Number of unknowns	423	680
Number of datum points	1	72
Degrees of freedom	250	311
S ₀ of 1 km leveling	0.86 mm	0.64 mm
$s_{\Delta h}$ of height differences (mean of all	4.15 mm	2.65 mm
lines)	4.13 11111	2.03 11111
S _H of adjusted heights (minimum)	0.79 mm	3.43 mm
S _H of adjusted heights (Maximum)	11.13 mm	8.14 mm
S _H of adjusted heights (mean)	7.27 mm	4.84 mm
Length of overall loop	4743 km	5350 km
Closing error of overall loop/	138.3 mm /	-13.7 mm/
permissible value	137.7mm	146.3mm

Height differences in mm between DHHN2016 and DHHN92

- Blue: uplift, Red: subsidence
- Maximum of height differences between -35mm and +33mm (besides of single height changes in mining areas)
- Interpretation is pending
- In the north-east (island of Rügen): assumed uplift because of postglacial rebound
- Uplift in the Eifel and Taunus region (Rhenish Slate Mountains) is well-known by geologists
- In some areas (south-East) differences go into reverse by comparison of older epochs (1985-1960)

GNSS-Campaign 2008

- 600 stations involved
 - 250 fundamental survey markers
 - 272 stations of the positioning service SAPOS[®]
 - 34 reference stations of IGS/EPN/GREF
 - 44 stations of positioning services of neighboring countries
- 2 computing centers
 - BKG (Bernese 5.0)
 - LGLN Lower Saxony (GNSMART 1.4)
- Precision: Position <1mm, height 2-3mm
- Adjustment without constrains (orbits IGS2005)
- Transformation into ITRF2005
- Transformation into ETRF2000 (memo 8)
- 3 Parameter (Rotation) Transformation into ETRS89/DREF91 (2016)

New quasigeoid model

- New gravity data
 - In Germany (red points in figure) from the German states
 - Data exchange with neighboring countries, e.g. Czech Republic, Netherlands, Belgium
 - Data from International Gravimetric Bureau (BGI), e.g. France, North Sea
 - Oil industry
 - measurements of BKG in cooperation with several partner
- New digital elevation model
 - Germany (DGM25)
 - Bathymetric data of Lake Constance
- Improvement of the software for terrain corrections and geoid modelling

Example I: Lake Constance

- Depth of the lake of up to 250m was neglected in geoid modelling so far
- Larger differences between gravimetric geoid and GNSS/Levelling data over the lake and in the vicinity of the lake (up to 10cm)
- 2012: Gravimetric measurements on the lake in Cooperation with Geoforschungszentrum Potsdam (GFZ) and the Institut für Seenforschung Langenargen (ISF)
- Total profile length: 320 km within 3 days

Example II: Seaborne gravity measurements in the Baltic Sea and the North Sea

2013: Baltic Sea, 10 days, 1500 km 2015 (April): Baltic Sea 10 days, 1600 km 2015 (June): North Sea

- Cooperation with
 - Geoforschungszentrum Potsdam (GFZ)
 - Bundesamt für Seeschifffahrt und Hydrographie (BSH)
 - Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein
 - FAMOS project

2013

Example III: Gravimetric Survey of intertidal mudflats

- Almost no gravity data in the intertidal mudflats so far
- Measurements 2014 (red points in the map) and 2015: about 450 points in cooperation with
 - Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein
 - Landesamt für Vermessung und Geoinformation Schleswig-Holstein
 - Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz
 - Wasser- und Schifffahrtsverwaltung
 - Landesamt für Geoinformation und Landesvermessung Niedersachsen

Introduction of DHHN2016

- Accurate determination of physical heights by GNSS methods needs coordinates of SAPOS[®] stations, height reference frame and quasigeoid to be high accurate, up to date and consistent
- After providing of the adjustment results 04/2014 German countries need time for
 - further measurements in subordinated leveling networks
 - including the data of subordinated leveling networks (new or digital available old data) in the new reference frame
- At the same time computation of a new German quasigeoid by BKG
- Computation of a model for height transformation from old to new height reference frame and providing in the internet
- 2017: synchronized introduction of heights: DHHN2016, quasigeoid: GCG2016, gravity: DHSN2016 and coordinates: ETRS89/DREF91/2016

Thank you for your kind attention!

Contact:

Federal Agency for Cartography and Geodesy Section G3 Branch office Leipzig Karl-Rothe-Str. 10-14 04105 Leipzig

contact person Martina Sacher martina.sacher@bkg.bund.de www.bkg.bund.de Tel. +49 (0) 341 5634 423

